KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Александр Викторович Волков - 100 великих загадок астрономии

Александр Викторович Волков - 100 великих загадок астрономии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Викторович Волков, "100 великих загадок астрономии" бесплатно, без регистрации.
Перейти на страницу:

Лишь в ХХ веке И.С. Шкловский первым понял, что планетарные туманности возникают в конце жизни звезд малой и средней массы, когда звезда, превращаясь в белого карлика, сбрасывает оболочку, и та рассеивается в окружающем пространстве.

Как полагают ученые, только в Млечном Пути имеется около 50 тысяч планетарных туманностей. Впрочем, в каталоги пока внесено лишь немногим более полутора тысяч таких объектов, причем сотню из них можно наблюдать даже в любительский телескоп. Для нашей Галактики, насчитывающей, по усредненной оценке, 200 миллиардов звезд, число планетарных туманностей, на первый взгляд, очень невелико. Все дело в том, что они недолговечны по сравнению со звездами. Они существуют лишь несколько десятков тысяч лет.

Тем не менее планетарные туманности играют важную роль в эволюции галактик. В ранний период своей истории наша Вселенная состояла главным образом из водорода и гелия. Лишь благодаря термоядерному синтезу, протекавшему в недрах звезд, она наполнилась тяжелыми элементами. Во многом именно планетарные туманности обогатили ими межзвездную среду.

Типичная планетарная туманность состоит примерно на 70 % из водорода и 28 % из гелия. Дополняют этот состав углерод, азот, кислород, а также небольшие количества других химических элементов. Протяженность подобных туманностей составляет в среднем около одного светового года, а их плотность – приблизительно 1000 частиц на один кубический сантиметр. Впрочем, молодые, только что образовавшиеся туманности – не такие разреженные. Их плотность может достигать миллиона частиц на кубический сантиметр.

В последние два десятилетия с помощью телескопа «Хаббл» удалось получить многочисленные фотографии планетарных туманностей. Примерно на каждом пятом снимке перед астрономами предстает разноцветный шар. Но в большинстве случаев эти объекты устроены гораздо сложнее. Они необычайно многолики. Почти 10 % всех туманностей имеют биполярную форму и скорее, напоминают бабочку, вот-вот готовую вспорхнуть. Некоторые очень асимметричны. Известна даже планетарная туманность, представляющая собой прямоугольник.

Почему они принимают то или иное обличье? Причины такого разнообразия до конца не выяснены. Может сказываться сила притяжения расположенных поблизости звезд и даже крупных планет. Влияние магнитных полей. Воздействие звездного ветра. Что же касается асимметричных и биполярных туманностей, то, возможно, они образовались на месте двойных звезд. Еще недавно считалось, что такое происходит лишь в исключительных случаях, и что обычно эти туманности возникают в финале жизни одиноких звезд. Наблюдения, проводимые телескопом «Хаббл», заставляют, пожалуй, пересмотреть прежние взгляды на их происхождение.

Для астрономов, изучающих планетарные туманности, одна из главных проблем заключается в том, что зачастую бывает очень трудно определить расстояние, на котором те находятся. Прежде всего, это касается отдаленных туманностей. А ведь подчас именно они оказываются единственными объектами в далеких галактиках, по которым исследователи могут уверенно судить о химическом составе этих звездных систем. В их образе перед нами проступает и наше будущее.

Когда-нибудь, почти через семь миллиардов лет, успев выжечь ближайшие планеты, потускнеет и Солнце – эта небольшая звезда, согревающая наш земной мирок. Да, прах становится прахом, а пыль – пылью. Нет ничего вечного под солнцем, нет ничего вечного и в мире звезд, этих огоньков, что – по меркам вечности – так быстро гаснут.

Посреди прежней Солнечной системы раскинется планетарная туманность. Возможно, под воздействием Юпитера она примет форму эллипса. Повлияют на ее облик и планеты, оказавшиеся в опасной близости от гибнущего Солнца. Их раскаленная твердь будет непрерывно излучать тяжелые элементы. Благодаря им туманность начнет переливаться всеми цветами радуги. На месте гибели Солнца и планет яркими, удивительными красками запылает цветок звездного вещества – живой огонь, вспыхнувший на космическом «могильнике».

Обозревая этот мрачный и эффектный финал, нельзя не признать, что Гершель, назвав данный класс туманностей «планетарными», был не так уж далек от истины. Они в самом деле связаны с планетами. Вот только те не рождаются среди разметанных клубов газа и пыли. Нет, обширная цветастая пелена, словно саваном, покрывает обломки мертвых планет. Надеясь узреть рождение космической жизни, Гершель, сам того не подозревая, отыскал далекие кладбища, над которыми еще долго будут пылать огни звездной памяти.

Незримая поступь коричневых карликов

Столетиями астрономическая классификация казалась незыблемой: кометы, планеты, звезды… Между планетами и звездами зияла пропасть. Они слишком разнились по своим размерам. Астрономы не раз задавались вопросом: «Какие законы запрещают появление небесных тел, больших, чем планеты, но меньших, чем звезды?» Не было логических объяснений этой разверзшейся пустоте. И несколько десятилетий назад ученые начали поиск объектов, которые могли бы заполнить непонятную лакуну.

Расчеты показывали, что масса этих небесных тел не может превышать 75–80 масс Юпитера (иначе объект загорится звездой) и не может быть меньше 13 масс Юпитера: все, что ниже этого предела, – планеты. Если в их недрах и начинается термоядерная реакция, то быстро гаснет. Мрачно мерцающие каменные шары – вот что они такое. Большую часть излучения, испускаемого ими, должно составлять инфракрасное, то есть тепловое, излучение. Они пышут жаром, как пироги в печи.

Эти тела прозвали «черными», или «инфракрасными», звездами. Лишь в 1975 году американский астроном Джилл Тартер придумала им прозвище, под которым они и вошли в научные труды: «коричневые карлики» (название не вполне точное, поскольку эти объекты выглядят красноватыми).

Однако их поиск обернулся фиаско. Их не было. Открытие же состоялось лишь в 1995 году, когда интерес к ним охладел так же сильно, как их недра. Наблюдая за созвездием Зайца, американские астрономы Шри Кулкарни и Тадаси Накадзима из Паломарской обсерватории обнаружили близ звезды Глизе 229, на расстоянии 18 световых лет от Земли, едва приметную светлую точку. Расчеты показали, что масса этого небесного тела в 30–40 раз превышает массу Юпитера. Это не была звезда. Об этом же свидетельствовал и спектральный анализ, ведь там обнаружился метан. В недрах звезд, разогретых до температуры не менее 1800 °C, он не может существовать, поскольку разлагается при температурах свыше 1200 °C. Объект однозначно был коричневым карликом.

Сравнительные размеры коричневых карликов Глизе 229B и Тейде 1 с Юпитером и Солнцем

Поиски его собратьев продолжились с новой силой. Однако успех пришел лишь в последнее десятилетие. Теперь астрономам известны уже свыше 500 подобных объектов. Их открывают чуть ли не еженедельно. Чаще всего они оказываются спутниками той или иной звезды. Но были обнаружены и карлики, располагавшиеся в стороне от звезд.

Причины длительных неудач объяснимы. В оптическом диапазоне эти небесные тела почти невозможно разглядеть – они светятся в сотни тысяч, а то и миллионы раз слабее Солнца. По результатам спектрального анализа видно, что их атмосфера содержит не только различные газы, но также силикаты и железо. При температуре около 2000 °C, царящей поначалу на поверхности коричневого карлика, железо пребывает в газообразном состоянии и конденсируется по мере того, как он остывает. Тогда на эту полупланету-полузвезду обрушиваются ливни из жидкого железа. Как показывают расчеты, которые проделали астрономы Адам Бургассер и Кэтрин Лоддерс из Вашингтонского университета, на поверхности карликов бушуют страшные бури, с которыми не сравнятся не то что земные ураганы, но и грандиозный вихрь, столетиями наблюдаемый на Юпитере, – Большое Красное Пятно.

Коричневые карлики оказались также мощными источниками радиоизлучения. Так, в 2006 году были обнаружены три подобных объекта, которые ритмично, словно пульсары, испускали радиоволны. Правда, они вращались гораздо медленнее пульсаров, излучая один радиоимпульс раз в два-три часа, в то время как ритм пульсаров исчисляется миллисекундами.

Итак, одни свойства сближают коричневые карлики с планетами, другие – со звездами. Возможно, они образуются, когда рост звезды по какой-либо причине прекращается. Такое может произойти в двойных звездных системах, когда один из партнеров выталкивает другого, прежде чем тот дорастет до размеров настоящей звезды. Причиной коллизии может стать и сила притяжения оказавшейся поблизости звезды, увлекающей за собой «недоношенную» звезду.

Может статься также, что в окрестности молекулярного облака, где рождается карлик, окажется очень горячая звезда. Под действием испускаемых ей ультрафиолетовых лучей вещество облака испарится быстрее, чем карлик успеет сам превратиться в звезду.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*