KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Марк Солонин - Разгром 1941 (На мирно спящих аэродромах...)

Марк Солонин - Разгром 1941 (На мирно спящих аэродромах...)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Марк Солонин, "Разгром 1941 (На мирно спящих аэродромах...)" бесплатно, без регистрации.
Перейти на страницу:

«Скороподъемность, так же как и скорость, находится в очень большой зависимости от превышения. Если истребитель находится вверху, то он после атаки с пикирования может на короткий период дать огромную скороподъемность и уйти вверх чрезвычайно крутой горкой.

Летчик, видя „Me-109“, проскакивающий мимо него сбольшой скоростью и уходящий свечой вверх, иногда не учитывает, что все это достигается не столько за счет качеств самолета, сколько за счет тактики, за счет преимущества в высоте, дающего на короткий период резкое увеличение скорости и скороподъемности…» (Наставление по ведению воздушного боя 1943 г.)

Динамическая горка, позволяющая увеличить реальную скороподъемность истребителя в 5–6 раз по сравнению со статическим режимом набора высоты, не является единственным видом динамического режима боевого маневрирования. Скорость (т. е. запас кинетической энергии) можно превратить не только в набор высоты, но и в «дополнительную тягу двигателя», резко повышающую горизонтальную маневренность самолета.

«Боевой разворот. Для выполнения боевого разворота разогнать самолет до максимальной скорости. Вводить самолет в боевой разворот с креном 15–20°; одновременно увеличивать угол набора и плавно давать полный газ. Выводить самолет из боевого разворота в горизонтальный полет на скорости 280 км/час с работающим на полной мощности мотором. После вывода из разворота газ сбавить до нормального. При выполнении боевого разворота самолет набирает высоту 800 м.»

В чем физический смысл этого маневра? Кинетическая энергия, накопленная перед началом боевого разворота («разогнать самолет до максимальной скорости»), в дальнейшем расходуется на преодоление резко возрастающего при полете с большими углами атаки аэродинамического сопротивления Можно сказать так: к тяге двигателя при динамическом развороте добавляется «сила инерции» (хотя школьные учителя физики очень не любят упоминания об этой не существующей в природе силе). Кроме того, за счет значительного падения скорости (с максимальной 500–565 км/час до указанной в инструкции 280 км/час) на боевом развороте обеспечивается одновременно и набор высоты (т. е. прирост потенциальной энергии, которую в следующую секунду боя можно будет снова превратить в прирост скорости на пикировании).

Полноценное использование огромных возможностей динамических режимов («огромных» — это значит улучшающих характеристики маневренности не на проценты, а в разы) отнюдь не просто. Кроме того, что от пилота требуется высокая летная и физическая подготовка, необходима опять же соответствующая тактика боевого применения.

Прежде всего, необходимо обеспечить превышение (именно высота была для истребителей той эпохи главным «аккумулятором энергии») над противником еще до встречи с ним. Во-вторых, желательно было — хотя это далеко не всегда соответствовало поставленной задаче — перевести бой с малых на средние высоты. Дело в том, что разогнаться на пикировании можно очень сильно, но для того, чтобы при этом не врезаться в землю, нужен был весьма значительный запас высоты. Так, инструкция по пилотированию «ЛаГГ-3» предупреждала летчика о том, что «при пикировании под углом 60° и достижении скорости 600 км/час по прибору самолет при выводе теряет 1400 м высоты». «Мессершмитту» «Bf-109» G при максимально допустимой перегрузке, равной 4 единицам, для выхода из пикирования на скорости 750 км/час нужен был запас высоты никак не менее 1100 метров. Таким образом, достаточно эффективный (и эффектно описанный во всех мемуарах) метод ведения воздушного боя: «разогнался в пикировании — обстрелял — ушел свечкой вверх» — был хорош в заоблачных высотах боев над Ла-Маншем. Боевые действия на Восточном фронте потребовали от истребителей спуститься на те высоты, на которых действовали ударные самолеты поля боя, т. е. на малые и предельно малые высоты, где всем участникам воздушных боев пришлось перейти к горизонтальному маневру с малой скоростью и большими перегрузками.

Вторым по значимости «аккумулятором энергии» является высокая скорость горизонтального полета. Но самолет не может долго лететь с максимальной скоростью — существуют ограничения по запасу топлива, из-за которых для обеспечения максимальной продолжительности патрулирования (или максимальной дальности сопровождения бомбардировщиков) приходилось лететь на крейсерских скоростях, составляющих, как правило, 50–60 % от максимальной (270–280 км/час у «ЛаГГ-3», 300–320 км/час у «Ла-5»). Таким образом, та реальная скорость, с которой истребитель вступал в реальный воздушный бой, в огромной степени определялась не мощностью мотора, не аэродинамическими ухищрениями, а опять-таки тактикой. Истребитель, патрулирующий на скорости 300–350 км/час, превращается из истребителя в мишень. Испытания серийного самолета «Ла-7» показали, что темп разгона составляет всего 94 км/час за минуту (на высоте 5 км, при начальной скорости 460 км/час). И это, заметьте, у «Ла-7», т. е. у одного из лучших поршневых истребителей мира. Другими словами, для разгона от крейсерской скорости до максимальной типичному истребителю требовалось порядка 150 секунд. Воздушный бой за это время мог уже закончиться…


Влияния ТТХ самолета на способность истребителя маневрировать на динамических режимах весьма сложны. Попытаемся отметить лишь некоторые, уместные в популярной книге для гуманитариев, аспекты.

Реализация динамических режимов маневрирования требует низкого аэродинамического сопротивления (чтобы кинетическая энергия не расходовалась впустую на нагрев воздуха), т. е. острого носа, тонкого крыла малой площади (т. е. большой удельной нагрузки). Скорее всего, такими свойствами обладает самолет с большой максимальной скоростью полета — но отнюдь не всегда (большую скорость можно получить на «бревне» с очень большой тяговооружённостью, на двигателе большой высотности). Более правдоподобна оценка по максимальной скорости пикирования — если самолет может разогнаться до больших скоростей, значит, он эффективно преобразует высоту в скорость (потенциальную энергию в кинетическую). Но и тут не все просто — максимально допустимая скорость пикирования может быть ограничена жесткостью и прочностью крыла (флаттер).

Вторым важнейшим условием преобразования скорости в маневр (вертикальный или горизонтальный) является низкая эволютивная скорость (эффективность динамического маневра, как было уже показано выше, определяется разностью квадратов максимальной и эволютивной скоростей). В скобках заметим, что за многие годы работы автору ни разу не попалась на глаза популярная книжка, в которой бы были указаны эти параметры. Косвенно о величине эволютивной скорости можно судить по близкой к ней величине посадочной скорости и еще по наличию предкрылков (если они есть, то допустимые по условиям срыва потока углы атаки будут больше, соответственно, эволютивная скорость — меньше). Хотя и в этом вопросе все очень непросто. Малая эволютивная скорость связана прежде всего с малой удельной нагрузкой, т. е. с «большим крылом», но большое крыло будет препятствовать разгону на пикировании.

Бывают и совсем неожиданные эффекты. Предкрылки, безусловно, увеличивают допустимые углы атаки, но англичане, испытывая в июне 1940 года трофейный «Мессершмитт», обнаружили у него такую странную особенность: при маневрировании с большими перегрузками и на больших углах атаки происходил несимметричный выпуск автоматических предкрылков на правом и левом крыле, что приводило к «рысканию» (быстрые и случайные изменения направления полета) и делало невозможной прицельную стрельбу.

Во всех предыдущих рассуждениях мы рассматривали самолет как материальную точку, мелькающую в небе под воздействием различных сил. Но аэродинамические силы, действующие на эту «точку», зависят от углов поворота крыла и фюзеляжа вокруг центра масс. Повороты эти происходят отнюдь не мгновенно, угловые скорости ограничены и особенностями конструкции, и максимальным усилием, с которым летчик тянет и давит на ручку и педали. Не хотелось бы утомлять читателя сверх меры, но без рассмотрения вопросов управляемости все оценки возможностей динамического маневрирования теряют практический смысл.

Для того чтобы развернуться, самолету надо накрениться (подробнее см. Главу 2). Для того чтобы накрениться, надо на одном крыле поднять элерон, а на другом опустить (это делается одним движением ручки управления налево или направо). Возможные дальнейшие события отражены на рис. 11 и рис. 12.


Рис. 11
Рис. 12

Отклонение элерона вниз приводит к увеличению кривизны профиля крыла, давление воздуха под крылом возрастает, и в результате появляется дополнительная подъемная сила, направленная вверх (см. рис. 11). На другом крыле в это время происходит все то же самое, только наоборот (элерон отклоняется вверх, давление под крылом уменьшается, над крылом — повышается, в результате появляется дополнительная аэродинамическая сила, направленная вниз). Самолет накреняется и входит в вираж. Но крыло — это тонкая пластина, отнюдь не «бесконечной жесткости». Под воздействием аэродинамической силы, «поднимающей» элерон, крыло начинает закручиваться, а угол атаки (угол между вектором скорости воздушного потока и крылом) — уменьшаться. (см. рис. 12). В результате этого сложного взаимодействия эффективность элеронов на больших скоростях полета начинает уменьшаться до нуля, а затем и вовсе наступает так называемый «реверс элеронов» — элерон отклоняется вниз, а подъемная сила крыла не только не возрастает, а наоборот — падает! При этом самолет начинает крениться не в ту сторону, куда хочет накренить его летчик (правда, практически до такого состояния дело не доходит, и процесс завершается на этапе полной потери поперечной управляемости самолета).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*