KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » История » Борис Малиновский - История вычислительной техники в лицах

Борис Малиновский - История вычислительной техники в лицах

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Малиновский, "История вычислительной техники в лицах" бесплатно, без регистрации.
Перейти на страницу:

Приложение 2

МЭСМ

Из книги С.А. Лебедева, Л.Н. Дашевского, Е.А. Шкабары «Малая электронная счетная машина». -М., Изд-во АН СССР, 1952. г., 162 с..

Малая электронная счетная машина работает по тем же общим принципам, что и большие универсальные быстродействующие машины.

Малая электронная счетная машина имеет арифметическое устройство, запоминающее устройство, устройство управления, вводное устройство и выводное устройство для печатания результатов.

Емкость запоминающего устройства, т. е. количество чисел, которое может в нем храниться, в значительной мере определяет гибкость машины применительно к решению разнообразных задач.

В малой машине емкость запоминающего устройства меньше, чем в больших машинах, что несколько ограничивает круг решаемых задач.

1. Основные параметры

Для малой электронной счетной машины принята двоичная система счета. Двоичная система счета требует меньшего количества элементов, чем десятичная, и, кроме того, весьма существенно упрощает операции умножения и деления, так как отсутствует таблица умножения.

В двоичной системе все числа изображаются двумя цифрами «1» и «О», что очень удобно для представления их в электрических схемах: наличие сигнала в какой-либо цепи означает цифру «1», отсутствие сигнала (или сигнал другого знака) означает цифру «О».

Переход из двоичной системы в десятичную весьма прост.

Так, например,

Двоичная система: 0, 1, 10, 11, 100, 101, 110, 111, 1000… Десятичная система: 0, 1, 2, 3, 4, 5, 6, 7, 8.

Арифметические действия в двоичной системе производятся по тем же правилам, что и в десятичной системе.

…При производстве вычислений на машине необходимо выбрать положение запятой. Возможны два способа: первый — место запятой выбирается постоянным и все числа занимают соответственно этому определенное положение (фиксированная запятая); второй — число представляется двумя величинами: цифровой частью числа (А) и его порядком (k), т. е. в двоичной системе число изобразится 2k А (плавающая запятая).

Представление чисел с их порядками расширяет диапазон работы машины, но значительно усложняет выполнение операций сложения и вычитания и увеличивает время их выполнения. Для МЭСМ положение запятой выбрано перед первым старшим разрядом, т. е. все числа на машине должны быть меньше единицы.

Для представления чисел машина имеет 16 разрядов, т. е. позволяет оперировать с числами до 4,7 знака в десятичной системе. Один разряд (17-й) используется для изображения знака числа. Код «0» в этом разряде означает положительный знак числа, код «1» — отрицательный.

В машине предусмотрены следующие операции: сложение, вычитание, умножение, деление, сдвиг числа на заданное количество разрядов, сравнение двух чисел с учетом их знаков, сравнение двух чисел по их абсолютной величине, передача с центрального управления на местное и обратно, передача чисел с магнитного запоминающего устройства, сложение команд, останов машины.

Для запоминания исходных данных и промежуточных результатов вычислений имеются запоминающие элементы, выполненные на триггерных ячейках. Для запоминания чисел предусмотрен 31 блок, а для запоминания команд — 63 блока. Это соотношение выбрано на основании рассмотрения программирования ряда задач.

Блоки для запоминания чисел имеют каждый по 17 ячеек, блоки для запоминания команд — по 20 ячеек.

Кроме того, имеются особые функциональные устройства для установки и хранения неизменных коэффициентов и команд (31 коэффициент и 63 команды). Предусмотрена также возможность использования магнитного барабана для запоминания около 5000 кодов чисел или команд.

Команды задаются в виде определенных кодов. Выбрана трехадресная система кода команд. Первые четыре разряда кода команд — код операции — определяют операцию, которая должна быть выполнена на машине (четыре разряда дают возможность получить 16 комбинаций кода, т. е. выбрать одну из 16 операций).

Следующие пять разрядов кода команды содержат номер ячейки запоминающего устройства, из которой должно быть взято первое число (первый адрес). Пять разрядов дают возможность получить 32 комбинации кода, т. е. выбрать одну из 31 ячейки чисел. Нулевое положение (32-я комбинация) не может быть использовано для выбора ячеек.

Следующие пять разрядок кода команды дают номер ячейки, из которой должно быть взято второе число (второй адрес).

Последние шесть разрядов кода команды определяют номер ячейки, куда должен быть направлен результат (третий адрес) после выполнения над обоими числами действия, указанного в коде операции.

В отдельных случаях разряды третьего адреса используются для выбора номера ячейки, из которой следует принять следующую команду. Так как в машине имеется 63 блока для запоминания команд, то для выбора одной из них необходимо иметь шесть разрядов.

Выбор трехадресной системы дает существенную экономию в количестве запоминающих ячеек для кодов по сравнению с одноадресной системой. В одноадресной системе часть разрядов используется для инструктивного кода, а остальные разряды указывают номер ячейки, из которой надо взять число или куда направить результат. Так, например, «передать на арифметическое устройство число, хранящееся в ячейке No К», «Помножить число, находящееся в арифметическом устройстве, на число, хранящееся в ячейке No Р»; «передать число с арифметического устройства на запоминание в ячейку No S» и т. п. В трехадресной системе все эти указания объединяются в одну команду.

Арифметические действия производятся универсальным арифметическим устройством, выполненным на триггерных ячейках.

При сложении двух чисел возникают переносы в старшие разряды. Существующие системы счетчиков позволяют эти переносы производить лишь последовательно, что может сильно затянуть операцию сложения.

…В наихудшем случае при 16 разрядах может возникнуть 16 последовательных переносов. Для сокращения операции сложения, которая является элементарной операцией для всех остальных действий, предусмотрена специальная схема арифметического устройства, позволяющая осуществить переносы в старшие разряды сразу, куда следует, а не последовательно. Такое решение позволило создать универсальное арифметическое устройство, пригодное для производства всех выбранных операций.

…Выбор запоминающего устройства на триггерных ячейках предопределил систему подачи кодов чисел. Выбрана последовательная система, так как при этом резко сокращается количество управляемых входных и выходных элементов для запоминающего устройства. При последовательной системе ввода кодов чисел на каждую ячейку запоминающего устройства необходимо иметь лишь один входной и один выходной управляемые блоки. При параллельном же вводе кодов чисел на каждую ячейку требуется количество управляемых входных и выходных блоков, равное количеству разрядов.

Параллельный ввод кодов чисел в то же время ускоряет операции сложения и вычитания. Однако значительное увеличение количества электронных ламп и цепей управления при запоминающем устройстве на триггерных ячейках не компенсируется получаемыми преимуществами.

Как указывалось раньше, для малой машины выбрана пониженная частота работы. Передача кодов чисел происходит с частотой 5000 импульсов в секунду. Полное время одного цикла, включающего прием двух чисел, производство операции с ними, передачу результата на запоминание и прием следующей команды, составляет 17,6 мс для всех операций, кроме деления, которое занимает от 17,6 до 20,8 мс.

Таким образом, скорость вычислений составляет 3000 операций в минуту.

Подобные скорости работы, полученные при сравнительно пониженной частоте, несоизмеримы со скоростью ручного счета.

Ввод исходных данных в машину осуществляется с перфорационных карт или посредством набора кодов на штекерном коммутаторе. Полученные результаты считываются специальным электромеханическим печатающим устройством или фиксируются на кинопленке.

Контроль правильности проведенных вычислений осуществляется путем соответствующего программирования решаемых задач, никаких специальных устройств для этой цели не предусматривается. Для определения исправности работы отдельных элементов машины применяются специальные программные тесты. Кроме того, предусмотрено переключение на ручную или полуавтоматическую работу. Переключив машину на ручную работу, можно по сигнальным лампам, расположенным на пульте управления, проследить работу всех элементов машины и выявить неисправное место.

При полуавтоматической работе машина останавливается после каждого такта работы и, таким образом, позволяет быстро произвести опробование отдельных элементов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*