KnigaRead.com/

Илья Леенсон - Удивительная химия

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Илья Леенсон - Удивительная химия". Жанр: Химия издательство -, год -.
Перейти на страницу:

Допустим теперь, что химик узнал, какие элементы и в каком соотношении содержатся в данном веществе; узнал он также, в каком порядке они соединены друг с другом. Сможет ли он теперь самостоятельно получить такое же вещество? Эта задача похожа на такую: человеку сказали, какие детали и в каком количестве содержатся в его телевизоре или автомобиле, а также в каком порядке они соединены друг с другом. Сумеет ли он, воспользовавшись этой информацией, самостоятельно сделать точно такой же телевизор или автомобиль? Понятно, что это зависит от мастерства человека, его знаний и возможностей. Если он должен сначала сам найти нужные руды, выплавить из них разные металлы… ну и так далее, то вряд ли он что-то успеет за всю свою жизнь. Если же это опытный механик, и у него есть все готовые детали, а также хорошие помощники, то за месяц-другой, глядишь, у него что-то и получится.

Примерно такая же ситуация и у химиков. Первые химики все реактивы готовили для себя сами и до «большой» химии было еще далеко. Сначала должны были заработать химические заводы, производящие тысячи разнообразных химических веществ — «заготовок» для будущих искусственных изделий. Одновременно должны были открыться химические лаборатории, в которых бы молодые химики учились премудростям соединения элементов в нужных пропорциях и в нужном порядке. Наконец, ученые-химики должны были разработать способы и приемы разнообразных превращений. Именно поэтому химия начала особенно интенсивно развиваться только во второй половине XIX века.

Все эти условия действуют и в настоящее время: химические предприятия производят вещества для синтезов (такие вещества называются химическими реактивами). Некоторые из них производятся миллионами тонн, потому что они нужны для получения синтетических тканей, моющих веществ, средств защиты растений и множества иных товаров, другие — в количестве всего лишь нескольких граммов или даже миллиграммов (например, радиоактивные препараты).

Подобно тому, как опытный механик из отдельных частей собирает сложный механизм (а при необходимости и сам изготавливает некоторые части), химики научились «разбирать» сложные органические молекулы на составные части и соединять их в иной последовательности — по своему желанию. Появилась также возможность, не затрагивая остов молекулы, заменять в ней отдельные фрагменты другими, что приводит порой к полнейшему изменению всех свойств вещества. Как из рога изобилия посыпались новые методы и приемы синтеза самых разнообразных органических соединений.

Откуда взялись атомы

До сих пор, говоря об атомной теории, о том, как из нескольких сортов атомов, соединенных между собой в разном порядке, получаются совершенно непохожие друг на друга вещества, мы ни разу не задались «детским» вопросом — а откуда взялись сами атомы? Почему атомов одних элементов очень много, а других — очень мало, и распространены они очень неравномерно. Например, всего один элемент (кислород) составляет половину земной коры. Три элемента (кислород, кремний и алюминий) в сумме составляют уже 85 %, а если к ним добавить железо, кальций, натрий, калий, магний и титан, то получим уже 99,5 % земной коры. На долю же нескольких десятков остальных элементов приходится всего 0,5 %. Самый редкий на Земле металл — рений, да и золота с платиной не так уж много, не зря они такие дорогие. А вот другой пример: атомов железа в земной коре примерно в тысячу раз больше, чем атомов меди, атомов меди в тысячу раз больше, чем атомов серебра, а серебра в сто раз больше, чем рения.

Совсем иначе распределены элементы на Солнце: там больше всего водорода (70 %) и гелия (28 %), а всех остальных элементов — только 2 %. Если взять всю видимую Вселенную, то водорода в ней еще больше. Почему так? В древности и в Средние века вопросами о происхождении атомов не задавались, ибо считали, что они существовали в неизменном виде и количестве всегда (а по библейской традиции — были созданы Богом в один день творения). И даже когда атомистическая теория победила и химия начала бурно развиваться, а Д. И. Менделеев создал свою знаменитую систему элементов, вопрос о происхождении атомов продолжал считаться несерьезным. Конечно, изредка кто-либо из ученых набирался смелости и предлагал свою теорию. Как уже говорилось, в 1815 году Уильям Прауг высказал предположение, что все элементы произошли из атомов самого легкого элемента — водорода. Как писал Праут, водород — это та самая «первоматерия» древнегреческих философов, которая путем «сгущения» дала все остальные элементы.

В XX веке усилиями астрономов и физиков-теоретиков была создана научная теория происхождения атомов, которая в общих чертах отвечала на вопрос о происхождении химических элементов. Весьма упрощенно эта теория выглядит так. Вначале вся материя была сосредоточена в одной точке с невероятно большой плотностью (1080 г/см3) и температурой (1027 К). Эти числа настолько велики, что для них даже не существует названий. Примерно 10 миллиардов лет назад в результате так называемого Большого взрыва эта сверхплотная и сверхгорячая точка начала быстро расширяться. Физики достаточно хорошо представляют себе, как развивались события спустя 0,01 секунды после взрыва. Теория же того, что происходило до этого, разработана значительно хуже, поскольку в существовавшем тогда сгустке материи плохо выполнялись известные ныне физические законы (и чем раньше — тем хуже). Более того, вопрос о том, что было до Большого взрыва, по существу даже не рассматривался, поскольку тогда не было самого времени! Ведь если нет материального мира, т. е. никаких событий, то откуда взяться времени? Кто или что будет его отсчитывать?

Итак, материя начала стремительно разлетаться и остывать. Чем ниже температура, тем больше возможностей для образования разнообразных структур (например, при комнатной температуре могут существовать миллионы различных органических соединений, при +500 °C — лишь немногие, а выше +1000 °C, вероятно, никакие органические вещества существовать не могут, — все они при высокой температуре расщепляются на составные части). По оценкам ученых, через 3 минуты после взрыва, когда температура снизилась до миллиарда градусов, начался процесс нуклеосинтеза (это слово происходит от латинского nucleus — «ядро» и греческого «синтесис» — «соединение, сочетание»), т. е. процесс соединения протонов и нейтронов в ядра различных элементов. Помимо протонов — ядер водорода, появились и ядра гелия; эти ядра еще не могли присоединить электроны и образовать атомы из-за слишком высокой температуры. Первичная Вселенная состояла из водорода (примерно 75 %) и гелия с примесью небольшого количества следующего по массе элемента — лития (в его ядре три протона). Этот состав не изменялся примерно 500 тысяч лет. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура снизилась до +3000 °С, электроны получили возможность соединяться с ядрами, что привело к образованию устойчивых атомов водорода и гелия.

Казалось бы, что и дальше Вселенная, состоящая из водорода и гелия, должна была расширяться и остывать до бесконечности. Но тогда не было бы не только других элементов, но и галактик, звезд, а также нас с вами. Бесконечному расширению Вселенной противодействовали силы всемирного тяготения (гравитации). Гравитационное сжатие материи в разных частях разреженной Вселенной сопровождалось повторным сильным разогревом — наступила стадия массового образования звезд, которая продолжалась около 100 миллионов лет. В тех состоящих из газа и пыли областях пространства, где температура достигала 10 миллионов градусов, начинался процесс термоядерного синтеза гелия путем слияния ядер водорода. Эти ядерные реакции сопровождались выделением огромного количества энергии, которая излучалась в окружающее пространство: так загоралась новая звезда. Пока в ней было достаточно водорода, сжатию звезды под действием сил тяготения противодействовало излучение, которое «давило изнутри». Наше Солнце также светит за счет «сжигания» водорода. Идет этот процесс очень медленно, так как сближению двух положительно заряженных протонов препятствует сила кулоновского отталкивания. Так что нашему светилу суждены еще долгие годы жизни.

Когда запас водородного горючего подходит к концу, постепенно прекращается и синтез гелия, а вместе с ним затухает мощное излучение. Силы гравитации вновь сжимают звезду, температура повышается и становится возможным слияние друг с другом уже ядер гелия с образованием ядер углерода (6 протонов) и кислорода (8 протонов в ядре). Эти ядерные процессы также сопровождаются выделением энергии. Но и запасам гелия рано или поздно приходит конец. И тогда наступает третий этап сжатия звезды силами гравитации. А дальше все зависит от массы звезды на этом этапе. Если масса не очень велика (как у нашего Солнца), то эффект от повышения температуры при сжатии звезды будет недостаточен, чтобы углерод и кислород могли вступить в дальнейшие реакции ядерного синтеза; такая звезда становится так называемым белым карликом. Более тяжелые элементы «изготовлены» в звездах, которые астрономы называют красными гигантами — их масса в несколько раз больше массы Солнца. В этих звездах и идут реакции синтеза более тяжелых элементов из углерода и кислорода. Как образно выражаются астрономы, звезды — это ядерные костры, зола которых — тяжелые химические элементы.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*