KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии

Айзек Азимов - Краткая история химии. Развитие идей и представлений в химии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Айзек Азимов, "Краткая история химии. Развитие идей и представлений в химии" бесплатно, без регистрации.
Перейти на страницу:

Более того, спирали образуют даже более сложные по структуре глобулярные белки. Английские химики Макс Фердинанд Перутц (уроженец Австрии) (род. в 1914 г.) и Джон Коудери Кендрю (род. в 1917 г.) обнаружили это при детальном исследовании строения гемоглобина и миоглобина (белков крови и мышц соответственно, способных обратимо присоединять кислород). В своей работе они использовали новый метод анализа — метод дифракции рентгеновских лучей: пучок рентгеновских лучей, проходящий через кристаллы, рассеивается атомами, образующими кристаллы. Рассеивание в заданном направлении и при заданном угле наиболее эффективно в том случае, когда атомы располагаются последовательно. Определяя величину отклонения, можно выявить расположение атомов внутри молекулы. Исследовать таким образом большие молекулы сложной структуры, подобные белковой молекуле,— задача весьма трудоемкая, и тем не менее к 1960 г. таким образом удалось уточнить последние детали строения молекулы миоглобина (состоящей из двенадцати тысяч атомов).

Полинг считал, что предложенную им спиральную модель молекулы можно распространить и на нуклеиновые кислоты. В начале 50-х годов английский физик Морис Хью Фредерик Уилкинс (род. в 1916 г.) изучал нуклеиновые кислоты методом дифракции рентгеновских лучей, и результаты его работы можно было использовать для проверки справедливости предположения Полинга. Английский физик Фрэнсис Гарри Комптон Крик (род. в 1916 г.) и американский химик Джеймс Дьюи Уотсон (род. в 1928 г.) установили, что удовлетворительно объяснить результаты дифракционных исследований можно, лишь несколько усложнив модель молекулы. Каждая молекула нуклеиновой кислоты должна представлять собой двойную спираль, образованную навитыми вокруг общей оси цепями. Эта модель Уотсона — Крика, предложенная ими впервые в 1953 г., сыграла важную роль в развитии генетики [96][97].

Взрывчатые вещества

Не избежали молекулы-гиганты и преобразующей руки химика. Произошло это вначале случайно. В 1845 г. швейцарский химик Христиан Фридрих Шенбайн (1799—1868), уже прославивший себя открытием озона (аллотропной модификации кислорода), проводил опыты в своей домашней лаборатории. Разлив смесь азотной и серной кислот, он вытер эту смесь хлопчатобумажным фартуком и повесил его сушиться над печкой. Как только фартук высох, раздался несильный взрыв и фартука не стало. Сам того не зная, Шенбайн превратил целлюлозу фартука в нитроцеллюлозу[98]. Нитрогруппы (перешедшие из азотной кислоты) послужили внутренним источником кислорода, и при нагревании целлюлоза сразу же полностью окислилась.

Шенбайн понял важность сделанного им открытия. Обычный черный порох при взрыве дает много дыма, покрывает сажей артиллеристов, загрязняет пушки и стрелковое оружие, а на основе нитроцеллюлозы (нитроклетчатки) можно было получить «бездымный порох».

Однако наладить производство нитроклетчатки для военных целей долгое время не удавалось: фабрики, как правило, взрывались. Только в 1891 г. Дьюару (см. гл. 9) и английскому химику Фредерику Аугустусу Абелю (1872—1902) удалось получить безопасную смесь. Поскольку эту смесь можно было прессовать в длинные шнуры, ее назвали кордитом.

В состав кордита кроме нитроклетчатки входит также нитроглицерин, который был получен в 1847 г. итальянским химиком Асканио Собреро (1812—1888). Это мощное бризантное взрывчатое вещество отличается очень высокой чувствительностью, и использовать его как таковое в военных целях оказалось невозможным. Однако, невзирая на чрезвычайную опасность работы с большими количествами этого соединения, его стали применять при прокладке дорог в горах.

Производством нитроглицерина занялось семейство шведского изобретателя Альфреда Бернарда Нобеля (1833—1896). Когда в результате взрыва погиб брат Нобеля, он сосредоточил свои усилия на «усмирении» этого взрывчатого вещества. В 1866 г. Нобель обнаружил, что кизельгур может впитывать значительные количества нитроглицерина. Пропитанный нитроглицерином кизельгур можно было формовать в брикеты. Такие брикеты были совершенно безопасны в обращении, хотя пропитывающий кизельгур нитроглицерин сохранял свою разрушительную силу. Нобель назвал полученную им смесь динамитом.

Получение новых и более мощных по сравнению с черным порохом (изобретенным более пяти столетий назад) взрывчатых веществ в конце XIX в. положило начало гонке вооружений. Его применение для военных целей, как и разработка отравляющих газов во время первой мировой войны, отчетливо продемонстрировало, что задачи науки можно извратить и заставить ее служить целям разрушения. Еще более наглядный урок преподало изобретение самолета и в конечном счете ядерного оружия (см. гл. 14). Наука, которая до конца XIX в. казалась средством создания на земле утопии, стала служить уничтожению.

Полимеры

Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза — это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин) более безопасна в обращении, и ее можно применять не только в военных целях.

Американский изобретатель Джон Уэсли Хайятт (1837—1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом, и завоевал приз [99]. Целлулоид был первой синтетической пластмассой — материалом, который можно отливать в формы [100].

Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839—1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.

Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк. Шардонне назвал эту ткань рейон — излучающая свет, так как ткань блестела и казалось, что она излучает свет.

Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854—1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.

Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.

Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров (мономер — вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).

Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С2Н4. Напишем структурные формулы двух молекул этилена:


Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.


Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.

Американский химик Лео Хендрик Бакеланд (1863—1944) искал заменитель шеллака — воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит. Эта фенолформальдегидная смола была первой синтетической пластмассой [101], которая по ряду свойств осталась непревзойденной.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*