KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Михаил Никитин - Происхождение жизни. От туманности до клетки

Михаил Никитин - Происхождение жизни. От туманности до клетки

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Михаил Никитин, "Происхождение жизни. От туманности до клетки" бесплатно, без регистрации.
Перейти на страницу:

Нет ли здесь противоречия? С одной стороны, абиогенный фотосинтез на ZnS требует света, и нуклеотиды несут следы отбора на устойчивость к ультрафиолету. С другой стороны, в наше время отложения сульфида цинка образуются только в темных морских глубинах вокруг «черных курильщиков». Чтобы вода могла выносить из недр Земли и накапливать на поверхности ZnS и MnS, требуется ее температура 200–250 °C, а для выноса FeS – 300–350 °C. Чтобы вода при таких температурах не закипала, необходимо высокое давление, которое сейчас бывает только в глубинах океана. Но, как мы помним, после гигантского столкновения и появления Луны Земля еще 50–100 млн. лет имела сверхплотную атмосферу углекислого газа, подобно современной Венере. Давление этой атмосферы в 50–200 раз превышало современное, и в ту эпоху геотермальные источники с отложениями ZnS и MnS (аналоги «белых курильщиков») могли существовать на поверхности Земли, под лучами Солнца.

Именно сульфид цинка позволяет снять противоречие между необходимостью ультрафиолета для появления нуклеотидов и РНК и его опасностью для сколько-нибудь сложных форм жизни. Всего один миллиметр осадка ZnS защищает от ультрафиолета так же эффективно, как 40-метровый слой воды. Поэтому первые организмы могли укрываться от света в толще минерального осадка, но при этом иметь доступ к продуктам фотохимических реакций в верхнем слое. Более того, видимый свет хорошо проходит через осадок сульфида цинка, и населяющие этот осадок организмы имели возможность вести свой собственный фотосинтез, используя видимый свет.

Как сделать выбор между «цинковым» и «железосерным» мирами?

По первой теории жизнь зарождалась в среде, где было очень много растворенного цинка. Он мог включаться в структуры РНК и первых белков и сохраниться там до наших дней. Если же жизнь вышла из «черных курильщиков», то скорее можно ожидать, что в РНК и древних белках будет содержаться железо.

Как мы видели выше (табл. 6.1), цинк по общему содержанию в клетках сравним с железом и превосходит все прочие переходные металлы. В известных структурах РНК железо совершенно отсутствует, а цинк встречается чаще других переходных металлов (табл. 6.2). На втором месте – марганец, ведущий себя подобно цинку. Многие рибозимы требуют присутствия ионов металлов для проявления каталитической активности. Среди таких металлов самые распространенные – магний, цинк и марганец, а железо никогда не встречается.

Цинком также обогащены самые древние белки и ферменты с древними функциями. Из 49 универсальных белков (таких, которые присутствовали во всех прочитанных на 2008 год геномах) 37 содержат цинк, 19 – марганец и только 3 – железо. Причем цинк не обязательно нужен для каталитической активности, часто он просто стабилизирует трехмерную структуру. Один из таких древних белковых фолдов (укладок) – ДНК-РНК-связывающий домен, называемый «цинковый палец», где атом цинка связан между двумя остатками цистеина и двумя – гистидина, очень широко распространен, например, среди ДНК-связывающих белков.

Таким образом, можно сказать, что содержание металлов в клетках подтверждает теорию «цинкового мира», а не «железосерного».

В пользу «цинковой» теории говорит еще то обстоятельство, что ионы железа легко расщепляют РНК, связываясь с 2' и 3' гидроксильными группами рибозы. Поэтому клетки хранят избыток железа в связанном виде, вместе с белком ферритином. Вахтерхойзер, чтобы обойти эту сложность, предполагает, что первые нуклеиновые кислоты содержали вместо рибозы четырехуглеродные сахара, такие как эритроза. Подобные ксенонуклеиновые кислоты были получены искусственно, они устойчивы к ионам железа, щелочам и высокой температуре, могут комплементарно соединяться с классическими РНК, но в таком случае непонятно, почему они сменились более уязвимыми нуклеиновыми кислотами с рибозой (подробнее об этом будет рассказано в главе 12).

В целом теория «цинкового мира» находит больше подтверждений, но полностью отвергать роль химических реакций на поверхности пирита нельзя. В конце концов, зоны сульфидов железа и сульфидов цинка соседствуют в одних и тех же геотермальных источниках. Вещества, синтезируемые на сульфиде железа, постепенно смываются и переносятся с током воды и пара в зону сульфида цинка, где могут включаться в происходящие там под действием света процессы. Именно железосерный «нижний этаж» геотермальных источников мог поставлять наверх серосодержащие вещества: карбонилсульфид, меркаптаны, тиоацетат и тиометилацетат. Последний особо важен для биохимии, так как является простейшим аналогом ацетилкофермента А, способного легко присоединять ацетильную группу (CO-CH3) к другим органическим молекулам (подробнее об ацетилкоферменте А будет рассказано в главе 11).

Фосфорная проблема и пути ее решения

Живые клетки содержат большое количество фосфора. Он входит в состав ДНК, РНК, энергетической «валюты» – АТФ и многих других жизненно важных молекул. Сахара присутствуют в клетках в основном в фосфорилированной форме. Однако в неживой природе фосфор существует практически только в виде фосфатных минералов, таких как апатит Ca5(PO4)3OH, которые нерастворимы в воде и химически инертны. Более того, высокая концентрация растворенного фосфата несовместима с клеточными концентрациями магния и кальция – их фосфаты плохо растворимы и должны выпадать в осадок. В клетке этого не происходит, потому что почти весь внутриклеточный фосфор находится в составе различных фосфорилированных органических молекул, соли которых с магнием и кальцием растворимы.

Как же собрать в колыбели жизни достаточно фосфора, причем в форме, пригодной для получения сахарофосфатов и нуклеотидов? В принципе, возможно несколько решений (рис. 6.6). Например, пирофосфат (P2O74−) растворим в воде в присутствии кальция и магния и, более того, способен служить источником энергии для биохимических реакций, подобно АТФ. Некоторые микроорганизмы и сейчас используют пирофосфат для тех реакций, которые у других организмов требуют затрат АТФ. Другая растворимая и химически активная форма фосфора – фосфит (HPO32−). Это соединение может окисляться до фосфата с выделением большого количества энергии и давно используется химиками для синтеза искусственной ДНК (Lestinger et al., 1975). Кроме того, многие бактерии обладают ферментами для окисления фосфита и могут использовать его как единственный источник фосфора. Некоторые бактерии даже способны получать энергию из процесса окисления фосфита.

Где и как могли накопиться пирофосфаты или фосфиты в высоких концентрациях? Хорошим источником могут быть метеориты. В двух типах метеоритов (состоящие из железа и силикатов энстатитовые хондриты и железные метеориты) содержится до 0,1–0,5 % минерала шрайберзита (фосфид железа Fe3P). При попадании в воду шрайберзит постепенно разлагается, выделяя фосфиты, фосфаты, пирофосфаты, оксид железа и водород. До 50 % фосфора из шрайберзита переходит в фосфиты и до 5 % – в пирофосфаты. Фосфит устойчив к ультрафиолетовому излучению, не окисляется в отсутствии катализаторов и может сохраняться в морской воде сотни миллионов лет (Pasek et al., 2008).

Другой источник фосфитов и пирофосфатов – вулканы и связанные с ними наземные геотермальные источники. Измерения японских геохимиков на вулкане Усу (остров Хоккайдо) показали, что в выходящих из фумарол вулканических газах с температурой 540–700 °C содержится заметное количество летучих оксидов фосфора: P4O10, PO2 и P4O6. При лабораторном моделировании поведения жидкой лавы при температуре 1300 °C оказалось, что до 40 % фосфора из нее улетучивается в виде оксидов (Yamagata et al., 1991). Последующее растворение этих оксидов в воде дает фосфиты и пирофосфаты.

Вода многих наземных геотермальных источников обогащена соединениями фосфора: например, в грязевых котлах Мутновской сопки на Камчатке его концентрация достигает 0,01 % (Bortnikova et al., 2009). В большинстве геохимических анализов геотермальной воды измерялся общий уровень фосфора во всех формах, не различая фосфат, пирофосфат и фосфит, но для горячих источников Мамонтовых озер в Калифорнии показано, что до половины фосфора в их воде содержится в виде фосфита (Pech et al., 2009). В древних вулканических газах и геотермальных водах, скорее всего, содержание всех форм фосфора было еще в несколько раз выше, потому что древнейшие материки, как мы помним из главы 4, были сложены богатыми фосфором KREEP-базальтами.

Еще один механизм накопления фосфора связан с уже упомянутыми кристаллами сульфида цинка. Как мы помним, на свету эти кристаллы постепенно разрушаются. В качестве подходящего восстановителя для предохранения ZnS от фотокоррозии, как оказалось, идеально подходят восстановленные формы фосфора – фосфиты и гипофосфиты (H2PO2−). В присутствии фосфитов ZnS проводит восстановление CO2, сопряженное с окислением фосфита до фосфата. Более того, значительная часть этого фосфата соединяется с прилипшими к кристаллу органическими молекулами, образуя фосфорилированные сахара и кислоты, как в клетках. Это один из возможных путей накопления фосфорилированной органики в местах зарождения жизни.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*