KnigaRead.com/

Николай Глинка - Общая химия

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Николай Глинка, "Общая химия" бесплатно, без регистрации.
Перейти на страницу:

В сером чугуне углерод содержится главным образом в виде пластинок графита. Серый чугун характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Кроме углерода, серый чугун всегда содержит другие элементы.

- 667 -

Важнейшие из них — это кремний и марганец. В большинстве марок серого чугуна содержание углерода лежит в пределах 2,4-3,8%, кремния 1-4% и марганца до 1,4%.

Высокопрочный чугун получают присадкой к жидкому чугуну некоторых элементов, в частности магния, под влиянием которого графит при кристаллизации принимает сферическую форму. Сферический графит улучшает механические свойства чугуна. Из высокопрочного чугуна изоговляют коленчатые валы, крышки цилиндров, детали прокатных станов, прокатные валки, насосы, вентили.

Ковкий чугун получают длительным нагреванием отливок из белого чугуна. Его применяют для изготовления детален, работающих при ударных и вибрационных нагрузках (например, картеры, задний мост автомобиля). Пластичность и прочность ковкого чугуна обусловлены тем, что углерод находится в нем в форме хлопьевидного графита.

242. Химические свойства железа. Соединения железа.


Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа (см. § 193) и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(III):

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fe3O4(FeO·Fe2O3):

Железо растворяется в соляной кислоте любой концентрации:

Аналогично происходит растворение в разбавленной серной кислоте:

В концентрированных растворах серной кислоты железо окисляется до железа(III):

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

При высоких концентрациях HNO3 растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа(II) и соединения железа(III). Первые отвечают оксиду железа (II), или закиси железа, FeO, вторые — оксиду железа(III), или окиси железа, Fe2O3.

- 668 -

Кроме того, известны соли железной кислоты H2FeO4, в которой степень окисленности железа равна +6.

Соединения железа(II).

Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них — сульфат железа(II), или железный купорос, FeSO4·7H2O, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа(III).

Сульфат железа(II) получают путем растворения обрезков стали в 20—30%-ной серной кислоте:

Сульфат железа(II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и получается белая масса безводной соли FeSO4 . При температурах выше 480°C безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяжелые белые пары серной кислоты:

При взаимодействии раствора соли железа(II) со щелочью выпадает белый осадок гидроксида железа(II) Fe(OH)2, который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III)

Безводный оксид железа(II) FeO можно получить в виде черного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода(II) при 500°C:

Карбонаты щелочных металлов осаждают из растворов солей железа(II) белый карбонат железа(II) FeCO3 . При действии воды, содержащей CO2 , карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fe(HCO3)2. В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа (III) действием различных окислителей — азотной кислоты, перманганата калия, хлора, например:

Ввиду способности легко окисляться, соли железа(II) часто применяются как восстановители.

- 669 -

Соединения железа (III).

Хлорид железа (III) FeCl3 представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В разбавленном растворе FeCl3 гидролизуется до основных солей. В парах хлорид железа (III) имеет структуру, аналогичную структуре хлорида алюминия (стр. 615) и отвечающую формуле Fe2Cl6; заметная диссоциация Fe2Cl6 на молекулы FeCl3 начинается при температурах около 500°C.

Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железа (III) Fe2(SO4)3 — очень гигроскопичные, расплывающиеся на воздухе белые кристаллы. Образует кристаллогидрат Fe2(SO4)3·9H2O (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли — квасцы, например железоаммонийные квасцы (NH4)Fe(SO4)2·12H2O — хорошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500°C сульфат железа (III) разлагается в соответствии с уравнением:

Сульфат железа (III) применяют, как и FeCl3, в качестве коагулянта при очистке воды, а также для травления металлов. Раствор Fe2(SO4)3 способен растворять Cu2S и CuS с образованием сульфата меди(II) это используется при гидрометаллургическом получении меди.

При действии щелочей на растворы солей железа (III) выпадает красно-бурый гидроксид железа (III) Fe(OH)3, нерастворимый в избытке щелочи.

Гидроксид железа (III) - более слабое основание, чем гидроксид железа (II) это выражается в том, что соли железа (III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fe(OH)3 солей не образует. Гидролизом объясняется и цвет растворов солей железа (III): несмотря на то, что Fe3+ почти бесцветен, содержащие его растворы окрашены в желто-бурый цвет, что объясняется присутствием гидроксо-ионов железа или молекул Fe(OH)3, которые образуются благодаря гидролизу:

- 670 -

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

При прокаливании гидроксид железа (III), теряя воду, переходит в оксид железа (III), или окись железа, Fe2O3. Оксид железа (III) встречается в природе в виде красного железняка и применяется как коричневая краска — железный сурик, или мумия.

Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия KSCN или роданида аммония NH4SCN на соли железа. Раствор роданида калия содержит бесцветные ионы SCN-, которые соединяются с ионами Fe(III), образуя кроваво-красный, слабо диссоциированный роданид железа(III) Fe(SCN)3. При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным.

Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например цианида калия, получается белый осадок цианида железа(II):

В избытке цианида калия осадок растворяется вследствие образования комплексной соли K4[Fe(CN)6] гексацианоферрата (II) калия

или

Гексацианоферрат(II) калия K4[Fe(CN)6]·3H2O кристаллизуется в виде больших светло-желтых призм. Эта соль называется также желтой кровяной солью. При растворении в воде соль диссоциирует на ионы калия и чрезвычайно устойчивые комплексные ионы [Fe(CN)6]4-. Практически такой раствор совершенно не содержит ионов Fe2+ и не дает реакций, характерных для железа(II).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*