KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » М. Рябов - Сборник основных формул по химии для ВУЗов

М. Рябов - Сборник основных формул по химии для ВУЗов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн М. Рябов, "Сборник основных формул по химии для ВУЗов" бесплатно, без регистрации.
Перейти на страницу:

Сумма величин временной и постоянной жесткости составляет общую жесткость воды:

Жобщ. = Жвр. + Жпост.

Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.

Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.

Са(HCO3)2 + 2HCl → CaCl2 + 2Н2CO3

Mg(HCO3)2 + 2HCl → MgCl2 + 2H2CO3

До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:

Н2CO3 ↔ HCO3¯ + Н+

Жвр (Н2O) = сэ(солей) • 1000 (ммоль/л).

Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.

Жпост (Н2O) = сэ(солей) • 1000 (ммоль/л).

4.5. Методы редоксиметрии

Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:

1) перманганатометрию. Титрант – раствор перманганата калия КMnO4. Индикатор – избыточная капля титранта;

2) иодометрию. Титрант – раствор свободного иода I2 или тиосульфата натрия Na2S2O3. Индикатор – крахмал.

Вычисление молярных масс эквивалентов окислителей и восстановителей

При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.

Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:

2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

1 | MnO4¯ + 8Н+ + 5ē → Mn2+ + 4H2O

5 | Fe2+ – ē → Fe3+

ион MnO4¯ как окислитель принимает пять электронов, а ион Fe2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.

M3(Fe2+) = M(Fe2+) = 55,85 г/моль.

В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:

2KMnO4 + 3Na2SO3 + Н2O → 2MnO2 + 3Na2SO4 + 2KOH

2 | MnO4¯ + 2Н2O + Зē → MnO2 + 4OH¯

3 | SO32- + 2OH¯ + 2ē → SO42- + Н2O

ион MnO4¯ принимает только три электрона, а ион восстановителя SO32- отдает два электрона, следовательно:

Молярные массы эквивалентов окислителей и восстановителей зависят от условий проведения реакций и определяются, исходя из соответствующих полуреакций.

4.6. Фотоколориметрия

Фотоколориметрия – оптический метод анализа, который рассматривает взаимодействие вещества с электромагнитным излучением в видимой области: длина волны (λ) 380–750 нм; волновое число (v) 2,5 104 – 1,5 • 104 см-1; энергия излучения (Е) 1—10 эВ.

Поглощенное световое излучение количественно описывается законом Бугера–Ламберта-Бера:

где А – поглощение вещества, или его оптическая плотность; Т – пропускание образца, т. е. отношение интенсивности света, прошедшего через образец, к интенсивности падающего света, I/I0; с – концентрация вещества (обычно моль/л); l – толщина кюветы (см); ε – молярная поглощательная способность вещества или молярный коэффициент поглощения [л/(моль см)].

Расчет молярного коэффициента поглощения проводят по формуле:

ε = А/(с Ь).

IV. Органическая химия

1. Алканы

Алканы (предельные углеводороды, парафины) – ациклические насыщенные углеводороды общей формулы СnH2n+2. В соответствии с общей формулой алканы образуют гомологический ряд.

Первые четыре представителя имеют полусистематические названия – метан (CH4), этан (С2Н6), пропан (С3Н8), бутан (С4Н10). Названия последующих членов ряда строятся из корня (греческие числительные) и суффикса -ан: пентан (С5Н12), гексан (С6Н14), гептан (С7Н16) и т. д.

Атомы углерода в алканах находятся в sp3-гибридном состоянии. Оси четырех sp3-орбиталей направлены к вершинам тетраэдра, валентные углы равны 109°28 .

Пространственное строение метана:

Энергия С—С связи Есс = 351 кДж/моль, длина С—С связи 0,154 нм.

Связь С—С в алканах является ковалентной неполярной. Связь С—Н – ковалентная слабополярная.

Для алканов, начиная с бутана, существуют структурные изомеры (изомеры строения), различающиеся порядком связывания между атомами углерода, с одинаковым качественным и количественным составом и молекулярной массой, но различающихся по физическим свойствам.

Способы получения алканов

1. СnH2n+2 →400–700 °C→ СpH2p+2 + СmH2m,

n = m + p.

Крекинг нефти (промышленный способ). Алканы также выделяют из природных источников (природный и попутный газы, нефть, каменный уголь).

(гидрирование непредельных соединений)

3. nCO + (2n + 1)Н2 → СnH2n+2 + nH2O (получение из синтез-газа (CO + Н2))

4. (реакция Вюрца)

5. (реакция Дюма) CH3COONa + NaOH →t→ CH4 + Na2CO3

6. (реакция Кольбе)

Химические свойства алканов

Алканы не способны к реакциям присоединения, т. к. в их молекулах все связи насыщены, для них характерны реакции радикального замещения, термического разложения, окисления, изомеризации.


1. (реакционная способность убывает в ряду: F2 > Cl2 > Br2 > (I2 не идет), R3C• > R2CH• > RCH2• > RCH3•)

2. (реакция Коновалова)

3. CnH2n+2 + SO2 + ½O2 →→ CnH2n+1SO3H – алкилсульфокислота

(сульфоокисление, условия реакции: облучение УФ)

4. CH4 →1000 °C→ С + 2Н2; 2CH4 →t>1500 °C→ С2Н2 + ЗН2 (разложение метана – пиролиз)

5. CH4 + 2Н2O →Ni, 1300 °C→ CO2 + 4Н2 (конверсия метана)

6. 2СnH2n+2 + (Зn+1)O2 → 2nCO2 + (2n+2)Н2O (горение алканов)

7. 2н-С4Н10 + 5O2 → 4CH3COOH + 2Н2O (окисление алканов в промышленности; получение уксусной кислоты)

8. н-С4Н10 → изо-С4Н10 (изомеризация, катализатор AlCl3)

2. Циклоалканы

Циклоалканы (циклопарафины, нафтены, цикланы, полиметилены) – предельные углеводороды с замкнутой (циклической) углеродной цепью. Общая формула СnH2n.

Атомы углерода в циклоалканах, как и в алканах, находятся в sp3-гибридизованном состоянии. Гомологический ряд циклоалканов начинает простейший циклоалкан – циклопропан С3Н6, представляющий собой плоский трехчленный карбоцикл. По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки «цикло» (циклопропан, циклобутан, циклопентан, циклогексан и т. д.).

Структурная изомерия циклоалканов связана с различной величиной цикла (структуры 1 и 2), строением и видом заместителей (структуры 5 и 6) и их взаимным расположением (структуры 3 и 4).

Способы получения циклоалканов

1. Получение из дигалогенопроизводных углеводородов

2. Получение из ароматичесих углеводородов

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*