KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Химия » Ольга Макарова - Шпаргалка по неорганической химии

Ольга Макарова - Шпаргалка по неорганической химии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Ольга Макарова - Шпаргалка по неорганической химии". Жанр: Химия издательство неизвестно, год неизвестен.
Перейти на страницу:

3) механические свойства образующихся продуктов коррозии (оксидных пленок);

4) температура.

Электрохимическая коррозия более распространена, включает в себя процессы окисления металла и восстановления коррозийного агента, протекающие раздельно в электролитной среде (растворы солей, кислот, почва и др.).

Ход электрохимической коррозии является совокупностью двух сопряженно протекающих реакций: анодной реакции (окисления) Ме = Меz+ + ze-и катодной реакции (восстановления) D + ze-+ (Dze-), где D – деполяризатор (окислитель), присоединяющий к себе электроны металла (кислород, ионы водорода и некоторых металлов).

Процесс ржавления железа: 2Fe + 2H2O + O2 = 2Fe2++ 4OH-.

В углеродистых сталях нередко возникают гальванические элементы «катод—анод». Это происходит в связи с дифференциацией поверхностей сталей на участки, имеющие различные электронные потенциалы.

Электрохимическая коррозия в зависимости от коррозийной среды делится на:

1) атмосферную; 2) почвенную; 3) микробиологическую; 4) жидкостную.

Интенсивность коррозии зависит от химического состава металла (его сплавов), содержания примесей и самого окислителя, его концентрации, влажности воздуха.

50. Защита металлов от коррозии

Защита металлов и сплавов от коррозии в агрессивных средах основывается на:

1) повышении коррозионной стойкости самого материала; 2) снижении агрессивности среды; 3) предотвращении контакта материала со средой с помощью изолирующего покрытия; 4) регулировании электродного потенциала защищаемого изделия в данной среде.

Существуют методы, используемые для защиты от электрохимической коррозии:

1) использование химически стойких сплавов; 2) защита покрытием поверхности металла или сплава; 3) снижение активности коррозийной среды; 4) электрохимические методы.

Самыми химически устойчивыми сплавами считаются нержавеющие (13 % хрома) и кислотоупорные (18 % хрома, 8—10 % никеля) стали.

Для покрытия металлов используются различные виды покрытий – металлические, неметаллические, покрытия, образующиеся при электрохимической и химической обработке поверхности металлов. Металлические покрытия – хром, никель, цинк, кадмий, алюминий, олово и др. Их наносят, используя методы гальванотехники.

Неметаллические покрытия – лаки, краски, эмали, фенолформальдегидные смолы и др.

Покрытия, получающиеся в результате обработки металла, – оксидные или солевые пленки (оксидирование алюминия).

Метод снижения агрессивности среды наиболее эффективен для изделий, используемых в малом количестве жидкости. Самыми распространенными агрессивными средами являются вода, водные растворы щелочей и кислот, почва и атмосфера. От концентрации растворенных кислорода и углекислого газа зависит агрессивность водных сред. Физически кислород и углекислый газ можно удалить, нагревая воду при пониженном давлении, химически – пропуская через слой стальных или железных стружек или обрабатывая восстановителем. Еще агрессивность водных сред снимают, используя ингибиторы коррозии. Анодные ингибиторы – гидроксид, карбонат, фосфаты, нитрит и бензоат натрия. Катодные ингибиторы – сульфаты цинка, бикарбонат натрия.

Лучший эффект достигается в сочетании с катодными ингибиторами. В кислых средах применяют органические ингибиторы. Существуют ингибиторы-пассиваторы – переводят металл в пассивное состояние (окислители пероксидного типа, соединения благородных металлов).

Агрессивность атмосферы зависит от ее влажности и района (промышленный, сельский и др.). Влияние атмосферы зависит от гигроскопичности продуктов коррозии металла и пылевых частиц на поверхности. Гигроскопичность продуктов коррозии стали уменьшают легированием медью в небольших количествах. Коррозионная агрессивность почвы обусловливается содержанием в ней О2, влажностью, электрической проводимостью, рН.

51. Общая характеристика подгруппы лития

Подгруппа лития – 1 группа, главная подгруппа – включает щелочные металлы: Li – литий, Na – натрий, K – калий, Cs – цезий, Rb – рубидий, Fr – франций. Общая электронная конфигурация – ns1. Физические свойства: невысокие температуры плавления и кипения, малая плотность, все металлы мягкие, легко режутся, кристаллизуются в объемной кристаллической решетке. Металлы серебристо-белые, только цезий золотисто-желтого цвета. Пары металлов имеют разную окраску: Li – кирпичный, Na – желтый, K – фиолетовый, Cs – голубой, Rb – красный. Химические и физические свойства щелочных металлов от Li к Fr изменяются. Возрастает атомная масса, вследствие чего растет плотность, увеличивается радиус атома – ослабляются силы притяжения между атомами, снижается температура плавления и кипения, уменьшается энергия атомизации атомов и энергия ионизации – сверху вниз ослабевают неметаллические свойства, а усиливаются металлические. Химические свойства: вследствие повышении металлических свойств усиливается химическая активность металлов – они легко отдают один валентный электрон, имеющийся на внешнем s-подуровне. Все щелочные металлы – сильные восстановители. В куске металла связь металлическая. Вступают во взаимодействие почти со всеми неметаллами. Соединения характеризуются преобладающим наличием ионной связи:

Легко реагируют с солями, вытесняя другие металлы: 2R + СuSO4 = R2SO4 + Сu.

Реагируют с водосодержащими соединениями – со спиртами, образуя алкоголяты: 2R + С2Н5ОН = 2С2Н5ОR + Н2? – этилат. С кислородом образуют оксиды: 2R + О2 = 2R2О. Оксиды с водой дают основания – щелочи: 2R2О + Н2О = 2RОН. Степень окисления щелочных металлов в соединениях равна +1, валентность – I. Щелочные металлы вступают в реакцию с водородом, образуя гидриды: 2R + Н2 = 2RН.

Водород в гидридах имеет степень окисления -1, являясь окислителем.

Получение щелочных металлов:

1) восстановлением из их оксидов:

2) электролизом расплава гидроксидов:

Нахождение в природе: щелочные металлы в силу повышенной активности встречаются в природе в виде хлоридов, алюмосиликатов, сульфатов и др. Наиболее распространены Na и К, встречающиеся в виде солей в морской воде, а также поваренной соли. Li, Cs, Rb содержатся в незначительных количествах в калиевых и литиевых минералах.

52. Натрий и калий

Натрий и калий – щелочные металлы, стоят в 1 группе главной подгруппы.

Физические свойства: схожи по физическим свойствам: легкие серебристо-белые мягкие металлы, с невысокими температурами плавления и кипения, малой плотностью. Пары натрия имеют желтый цвет, а пары калия – фиолетовый. Природный натрий состоит из одного изотопа (23), а К – из двух изотопов (39) и (41).

Химические свойства: химические свойства натрия и калия очень схожи, калий активнее натрия, так как радиус его атома больше и внешний 1s-электрон находится дальше от ядра. Электронная конфигурация Na: 1s22s1; К: 1s22s12р63s1. Они легко отдают один электрон, имеющийся на внешнем s-подуровне, превращаясь в положительно заряженные ионы. На воздухе тускнеют и окисляются. Связь между атомами металлическая. Соединения с натрием и калием носят ионный характер. Высокая химическая активность.

1. Очень бурно реагируют с кислородом: 2Na + О2 = Na2O2 (пероксид натрия) при t ниже180 °C: 4Na + О2 = 2Na2O.

Аналогичные реакции идут с калием, но калий образует еще и надпероксид – KO2.

2. С водой идет бурная реакция: 2Na + 2H2O = 2NaOH + H2?.

У калия данная реакция проходит с воспламенением водорода: 2К + 2H2O = 2KOH + H2?.

3. Реагируют с водородом при нагревании, образуя солеобразные гидриды: 2Na + H2 = 2NaH.

4. Легко взаимодействуют с серой, образуя сульфиды: 2Na + S = Na2S.

5. В атмосфере фтора и хлора натрий и калий воспламеняются, сгорают и образуют соли: 2Na + Cl2 = 2NaCl.

6. С жидким бромом натрий пассивно взаимодействует: 2Na + Вr2 = 2NaВr, а калий реагирует со взрывом: 2К + Вr2 = 2КВr.

7. При пропускании над расплавленным натрием и калием газообразного аммиака образуются амиды: 2Na + 2NН3 = 2NaNН2 + Н2?; 2К + 2NН3 = 2КNН2 + Н2?.

8. Реагируют с водосодержащими соединениями – со спиртами, образуя алкоголяты: 2К + С2Н5ОН = 2С2Н5ОК (этилат калия) + Н2?.

Со ртутью калий и натрий образуют амальгамы – твердые сплавы – восстановители вместо чистых металлов.

Получение натрия и калия:

1) восстановлением из их оксидов: Si + 2К2O = SiO2 + 4К;

2) электролизом расплава гидроксидов:

Нахождение в природе: Na и К встречаются в виде солей в морской воде, а также в виде поваренной соли. Наибольшее значение имеют минералы сильвинит – КCl?NaCl и карналлит – КCl?МgCl2?6Н2О. Натрий и калий – одни из самых распространенных элементов в земной коре.

53. Едкие щелочи

Щелочи образуют гидроксиды щелочных металлов 1 группы главной подгруппы при растворении их в воде.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*