Николай Глинка - Общая химия
Пятый большой период составляют следующие два ряда, шестой и седьмой. Этот период начинается щелочным металлом рубидием и заканчивается благородным газом ксеноном.
В восьмом ряду после лантана идут четырнадцать элементов, называемых лантаноидами ( или лантанидами), которые чрезвычайно сходны с лантаном и между собой. Ввиду этого сходства, обусловленного особенностью строения их атомов (см § 32), лантаноиды обычно помещают вне общей таблицы, отмечая лишь в клетке для лантана их положение в системе.
Поскольку следующий за ксеноном благородный газ радон находится только в конце девятого ряда, то восьмой и девятый ряды тоже образуют один большой период — шестой, содержащий тридцать два элемента.
В больших периодах не все свойства элементов изменяются так последовательно, как во втором и третьем. Здесь наблюдается еще некоторая периодичность в изменении свойств внутри самих периодов. Так, высшая валентность по кислороду вначале равномерно растет при переходе от одного элемента к другому, но затем, достигнув максимума в середине периода, падает до двух, после чего опять возрастает до семи к концу периода. В связи с этим большие периоды разделены каждый на две части (два ряда).
- 50 -
Десятый ряд, составляющий седьмой — пока незаконченный — период, содержит девятнадцать элементов, из которых первый и последние тринадцать получены лишь сравнительно недавно искусственным путем. Следующие за актинием четырнадцать элементов сходны по строению их атомов в актинием; поэтому их под названием актиноиды (или актиниды) помещают, подобно лантаноидам, вне общей таблицы.
В вертикальных столбцах таблицы, или в группах, располагаются элементы, обладающие сходными свойствами. Поэтому каждая вертикальная группа представляет собой как бы естественное семейство элементов. Всего в таблице таких групп восемь. Номера групп отмечены вверху римской цифрой.
Элементы, входящие в первую группу, образуют оксиды с общей формулой R2O, во вторую - RO, в третью R2O3 и т.д. таким образом, наибольшая валентность элементов каждой группы по кислороду соответствует за немногими исключениями номеру группы.
Сравнивая элементы, принадлежащие к одной и той же группе, нетрудно заметить, что, начиная с пятого ряда (четвертый период), каждый элемент обнаруживает наибольшее сходство не с элементом, расположенным непосредственно под или над ним, а с элементами, отделенными от него одной клеткой. Например, в седьмой группе бром не примыкает непосредственно к хлору и йоду, а отделен от хлора марганцем, а от йода — технецием; находящиеся в шестой группе сходные элементы - селен и теллур разделены молибденом, сильно отличающимся от них; находящийся в первой группе рубидий обнаруживает большое сходство с цезием, стоящим в восьмом ряду, но мало похож на расположенное непосредственно под ним серебро и т.д.
Это объясняется тем, что с четвертого ряда начинаются большие периоды, состоящие каждый из двух рядов, расположенных один над другим. Поскольку в пределах периода металлические свойства ослабевают в направлении слева направо, то понятно, что в каждом большом периоде у элементов верхнего (четного) ряда они выражены сильнее, чем у элементов нижнего (нечетного). Чтобы отметить различие между рядами, элементы первых рядов больших периодов сдвинуты в таблице влево, а элементы вторых вправо.
Таким образом, начиная с четвертого периода, каждую группу периодической системы можно разбить на две подгруппы: «четную», состоящую из элементов верхних рядов, и «нечетную», образованную элементами нижних рядов. Что же касается элементов малых периодов, которые Менделеев назвал типическими, то в первой и второй группах они ближе примыкают по своим свойствам к элементам четных рядов и сдвинуты влево в других к элементам нечетных рядов и сдвинуты вправо.
- 51 -
Рис. 1. Зависимость атомного объема элемента от атомной массы.
Поэтому типические элементы обычно объединяют со сходными с ними элементами четных или нечетных рядов в одну главную подгруппу, а другая подгруппа называется побочной.
При построении периодической системы Менделеев руководствовался принципом расположения элементов по возрастающим атомным массам. Однако, как видно из таблицы, в трех случаях этот принцип оказался нарушенным. Так, аргон (атомная масса 39,948) стоит до калия (39,098), кобальт (58,9332) находится до никеля (58,70) и теллур (127,60) — до йода (126,9045). Здесь Менделеев отступил от принятого им порядка, исходя из свойств этих элементов, требовавших именно такой последовательности их расположения. Таким образом, он не придавал исключительного значения атомной массе и, устанавливая место элемента в таблице, руководствовался всей совокупностью его свойств. Позднейшие исследования показали, что произведенное Менделеевым размещение элементов в периодической системе является совершенно правильным и соответствует строению атомов (подробнее см. гл III).
Итак, в периодической системе свойства элементов, их атомная масса, валентность, химический характер изменяются в известной последовательности как в горизонтальном, так и в вертикальном направлениях. Место элемента в таблице определяется, следовательно, его свойствами, и, наоборот, каждому месту соответствует элемент, обладающий определенной совокупностью свойств.
- 52 -
Поэтому, зная положение элемента в таблице, можно довольно точно указать его свойства.
Не только химические свойства элементов, но и очень многие физические свойства простых веществ изменяются периодически, если рассматривать их как функции атомной массы.
Периодичность в изменении физических свойств простых веществ ярко выявляется, например, при сопоставлении их атомных объемов*.
Изображенная на рис. 1 кривая показывает, как изменяется атомный объем элементов с возрастанием атомной массы: наибольшие атомные объемы имеют щелочные металлы.
Так же периодически изменяются и многие другие физические константы простых веществ.
Дмитрий Иванович Менделеев родился 27 января (8 февраля) 1834 г. в г. Тобольске в семье директора местной гимназии. Окончив Тобольскую гимназию, поступил в Петербургский педагогический институт, который окончил в 1855 г. с золотой медалью. В 1859 г., защитив магистерскую диссертацию на тему «Об удельных объемах», Менделеев уехал за границу в двухлетнюю научную командировку. После возвращения в Россию он был избран профессором сначала Петербургского технологического института, а два года спустя — Петербургского университета, в котором в течение 33 лет вел научную и педагогическую работу. В 1892 г. Менделеев был назначен ученым хранителем Депо образцовых мер и весов, преобразованного по его инициативе в 1893 г. в Главную палату мер и весов (ныне Всесоюзный научно-исследовательский институт метрологии имени Д. И. Менделеева).
Величайшим результатом творческой деятельности Менделеева было открытие им в 1859 г., т.е. в возрасте 35 лет, периодического закона и создание периодической системы элементов. Из других работ Менделеева наиболее важными являются «Исследования водных растворов по удельному весу», докторская диссертация «О соединении спирта с водой» и «Понимание растворов как ассоциаций». Основные представления разработанной Менделеевым химической, или гидратной, теории растворов составляют важную часть современного учения о растворах.
Выдающимся трудом Менделеева является его книга «Основы химии», в которой впервые вся неорганическая химия была изложена с точки зрения периодического закона.
Органически сочетая теорию с практикой, Менделеев в течении всей своей жизни уделял много внимания развитию отечественной промышленности.
В 1984 г. научная общественность Советского Союза и многих стран мира торжественно отметила стопятидесятилетие со дня рождения Д. И. Менделеева — выдающегося ученого, открывшего периодический закон и создавшего периодическую систему элементов.
Дмитрий Иванович Менделеев (1834 — 1907)
* Атомный объем — объем, занимаемый одним молем атомов простого вещества в твердом состоянии.
- 53 -
19. Значение периодической системы.
Периодическая система элементов оказала большой влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований.
В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид TiO2, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т.е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы экаалюминием и экасилицием.