KnigaRead.com/

М. Дроздова - Органическая химия

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн М. Дроздова, "Органическая химия" бесплатно, без регистрации.
Перейти на страницу:

Для обозначения производных фенантрена его атомы в формуле нумеруют, как показано выше.

Фенантрен – блестящие бесцветные кристаллы, легко растворимые в бензоле и его гомологах.

Крайние ядра фенантрена обладают ароматическим характером подобно бензолу. В среднем ядре 9-й и 10-й атомы углерода, связанные двойной связью, ве36б дут себя подобно цепям ненасыщенных углеводородов, легко присоединяя бром (с разрывом двойной связи), легко окисляясь и т. д.

Фенантрен не нашел такого широкого технического применения, как антрацен. Однако значение его очень велико. Оказалось, что ядро фенантрена лежит в основе большого ряда соединений, обладающих физиологическим действием. Так, например, ядро фенан-трена (частично гидрированного, т. е. имеющего меньшее число двойных связей) лежит в основе таких важнейших алкалоидов, как морфин и кодеин.

Ядро полностью гидрированного фенантрена, конденсированное с пятичленным кольцом циклопентана, называется циклопентанопергидрофенантреном. Это ядро лежит в основе молекул стероидов, к которым относятся стерины, витамины группы D, желчные кислоты, половые гормоны, агликоны сердечных гли-козидов и ряд других исключительно важных в биологическом отношении веществ.

Другие конденсированные системы

Наряду с нафталином, антраценом и фенантреном в каменноугольном дегте содержится большое число других углеводородов с конденсированными циклами.

Многие ароматические углеводороды со спаянными циклами являются канцерогенными веществами, т. е. обладают способностью вызывать рак. Особенно сильным канцерогенным действием обладает так называемый метилхолантрен.

37. Небензольные ароматические соединения

Основные характерные признаки ароматических соединений: устойчивость к окислению, легкость реакций электрофильного замещения – нитрования, сульфирования, галогенирования, весьма малая склонность к реакциям присоединения. Большой интерес имеют соединения, не являющиеся производными бензола, но обладающие ароматическими свойствами, т. е. небензольные ароматические соединения.

Работами Робинсона и других исследователей было показано, что для проявления ароматических свойств необходимо наличие в кольце (не обязательно ше-стичленном) так называемого ароматического секстета электронов – шести сопряженных р-электро-нов. Для того чтобы могло произойти сопряжение р-электронов, оси их должны быть параллельными, а, следовательно, все кольцо должно быть в одной плоскости – копланарно. Копланарными могут быть не всякие молекулы, а такие, валентные углы которых близки к 120° (валентным углам бензола). Таким условиям удовлетворяют в первую очередь пяти– и семич-ленные кольца. В дальнейшем квантовомеханические расчеты показали возможность существования гораздо большего числа ароматических систем, в состав которых входят не только пяти– и семичленные циклы.

Согласно правилу Хюккеля, ароматическими свойствами обладают все циклы с сопряженными связями, имеющие число сопряженных р-электронов, равное 4n + 2 (где n = 0, 1, 2, 3 и т. д.). Для бензола n = 1, Число сопряженных р-электронов равно 4n + 2 = 4 + 2 = 6.

Многие из предсказанных теорией небензольных ароматических систем были синтезированы.

Ароматическая система с пятичленным циклом

Циклопентадиенильный анион. Циклопентадиениль-ный анион можно получить из циклопентадиена – вещества, относящегося к алициклическому ряду. Атомы водорода в метиленовой группе этого вещества обладают большой подвижностью. При действии порошкообразного металлического натрия в кипящем ксилоле из этой метиленовой группы отщепляется водород и образуется циклопентадиенил-натрий.

В процессе отщепления атома водорода и образования циклопентадиенильного иона у углеродного атома остается два электрона (из которых один – собственный электрон углерода, а другой – от отщепившегося водорода). Происходит изменение гибридизации орбиталей электронов. Из двух оставшихся электронов один в виде р-электронного облака перекрывается с двумя соседними р-электронами, образуя единую сопряженную систему пяти р-орбиталей, а другой электрон равномерно распределяется между пятью р-орбиталями, т. е. с одинаковой степенью вероятности может находиться на каждой из них. Таким образом, за счет пяти собственных электронов углеродных атомов и одного лишнего создается секстет сопряженных р-электронов, необходимый для проявления ароматических свойств.

38. Ароматические системы с семичленным циклом

Катион тропилия. В циклопентадиенильном анионе ароматический секстет создается за счет пяти электронов углеродных атомов пятичленного кольца и одного лишнего электрона. Но возможен и другой путь образования ароматического секстета – при потере одного электрона от семи углеродных атомов семич-ленного кольца (это характерно для катиона тропи-лия). Катион тропилия можно получить при действии молекулярным бромом на углеводород, тропилиден или циклогексатриен – семичленную систему с тремя двойными связями.

В конечном итоге сущность реакции заключается в отщеплении от метиленовой группы.

Таким образом, создается единая система семи сопряженных р-орбиталей с одинаковыми расстояниями С-С. Однако эти семь орбиталей заполнены лишь шестью электронами. Недостаток одного электрона в этой системе является причиной положительного заряда катиона тропилия.

Соли тропилия хорошо растворимы в воде и нерастворимы в органических растворителях. Ионы тро-пилия, обладающие положительным зарядом, легко вступают в реакции нуклеофильного замещения, в результате чего образуются нейтральные производные тропилидена.

Ароматическая система, содержащая конденсированные пятичленное и семичленное кольца

Азулен. Азулен представляли ранее как конденсированную систему, содержащую пятичленное кольцо циклопентадиена и семичленное кольцо циклогексатри-ена, или систему циклопентадиеноциклогептатриена.

По современным данным азулен правильнее представлять как конденсированную систему ци-клопентадиенильного аниона и катиона тропилия. Каждый из 10 углеродных атомов азулена имеет р-орби-таль, все они образуют единую электронную систему. Однако электронная плотность в пяти– и семичленном кольцах не одинакова. Поскольку каждое кольцо стремится иметь ароматический секстет электронов, се-мичленное кольцо отдает пятичленному один электрон. В результате в пятичленном кольце шесть электронов располагаются на пяти р-орбиталях (это кольцо будет иметь отрицательный заряд), а в семичленном кольце оставшиеся шесть электронов расположатся на семи р-орбиталях (это кольцо будет иметь положительный заряд).

Азулен – кристаллическое вещество синего цвета. Синий или сине-фиолетовый цвет имеют и производные азулена. Окраска обусловлена наличием в молекуле достаточно длинной сопряженной системы р-электронов.

Азулен легко изомеризуется в нафталин. Производные азулена, в частности различные алкилзамещен-ные, содержатся в эфирных маслах ряда растений, в том числе лекарственных (римская ромашка, эвкалипт, некоторые виды полыни), чем объясняется противовоспалительное действие этих растений.

39. Одноатомные фенолы

Способы получения

1. Получение из каменноугольного дегтя. Этот способ является важнейшим техническим способом получения фенолов. Он состоит в том, что сначала фракции дегтя обрабатывают щелочами. Фенолы, хорошо растворимые в водных растворах щелочей с образованием фенолятов, легко отделяются при этом от углеводородов дегтя, которые в свою очередь не растворяются ни в воде, ни в водных растворах щелочей. Полученные щелочные растворы обрабатывают серной кислотой, которая разлагает феноляты, в результате чего опять выделяются фенолы, например:

C6H5ONa + H2SО4 → NaHSО4 + C6H5OH.

Выделенные фенолы для разделения подвергают повторной фракционной перегонке и дальнейшей очистке.

2. Получение из солей сульфокислот. При сплавлении солей сульфокислот со щелочами образуются фенол и сульфит калия:

C6H5SO3K + КОН → С6Н5ОН + K2SО4.

Образующийся фенол в присутствии КОН превращается в фенолят:

С6Н5ОН + КОН → С6Н5ОК + H2О.

Фенолят далее разлагают серной кислотой, причем образуется свободный фенол:

С6Н5ОК + H2SО4 → С6Н5ОН + KHSO4.

3. Получение из кумола (изопропилбензола).

Кумол окисляют кислородом воздуха; образовавшаяся гидроперекись кумола при действии серной кислоты дает фенол и другой ценный продукт – ацетон:

кумол → гидроперекись кумола → фенол.

4. Получение из солей диазония – важный способ введения фенольного гидроксила.

Кумол получают алкилированием бензола пропиленом (выделяемым из отходящих газов крекинга) в присутствии катализаторов (например, AIСl13).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*