KnigaRead.com/

Агаджан Бабаев - Пустыня как она есть

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Агаджан Бабаев, "Пустыня как она есть" бесплатно, без регистрации.
Перейти на страницу:

Правда, первая попавшаяся пленка для таких перекрытий не подойдет — она должна хорошо переносить жару, не плавиться и не рассыпаться под действием солнечных лучей. Опыт показывает, что создание подобной полимерной пленки задача вполне разрешимая и скромный дар химии, бесспорно, будет применяться везде, где нужно уберечь воду от испарения. О том, что это даст, можно судить по такой цифре — в системах орошения чуть ли не 20 процентов воды, если не больше, теряется из-за интенсивного испарения.

Попутно несколько слов об акведуках. У них богатая история, она начинается во времена, которым еще не был знаком железобетон. Уже древнейшие мелиораторы Ближнего Востока строили самотечные водоводы для орошения засушливых земель. И там, где на пути воды попадались непреодолимые неровности рельефа — горы или глубокие впадины — строители прорывали туннели или создавали акведуки — арочные мосты, по которым проходил водоводный желоб.

Первый большой акведук, о котором сохранились достоверные сведения, был построен в Риме за 300 лет до нашей эры, его протяженность была значительной и по нашим меркам: он протянулся на 20 километров. В те далекие времена вода приходила в Рим по 14 водопроводам, один из них имел протяженность около 100 километров, из них 11 километров приходилось на акведуки.

Современные акведуки в последнее время часто можно увидеть в газетах и журналах на фотографиях, иллюстрирующих работы по обводнению пустынь. По песчаным просторам на многие километры тянутся железобетонные желоба, приподнятые над песком на пластинчатых железобетонных стойках. Масштабы строительства удобного и сравнительно экономичного водовода настолько велики, что акведук постепенно становится типичным элементом пустынного пейзажа.

Нынешние акведуки большой протяженности — детище строительной индустрии, освоившей поточное производство железобетонных конструкций. И конечно, результаты работы ученых, занимающихся проблемами уменьшения испарения воды в пустынях.

Зеленый город Шевченко. Многие знают о прекрасном городе, выросшем в пустыне. Город можно смело назвать детищем труда и науки. В числе его главных достопримечательностей не только всемирно известная мощная атомная электростанция, крупный опреснитель морской воды, но и тщательно продуманная система водоснабжения. В городе три водопроводные линии — по одной идет высококачественная пресная питьевая вода, по второй — несколько солоноватая для ванных комнат и полива зеленых насаждений, по третьей — обычная морская вода, используемая для разных технических нужд, в частности для канализации.

В городе проживает более 120 тысяч человек, на каждого из них приходится воды ничуть не меньше, чем на жителя таких городов, как Москва или Киев. В достатке получают воду и зеленые насаждения, а напоить их дело не такое уж простое: взрослое дерево выпивает 5–10 литров воды в час. О том, насколько удается обеспечить водой флору в пустынном городе Шевченко, говорит хотя бы тот факт, что на каждого жителя здесь приходится 45 квадратных метров площади, занятой зелеными насаждениями. Это почти в полтора раза больше, чем в Москве, в два раза больше, чем в славящейся своими парками Вене, примерно в пять раз больше, чем в Нью-Йорке и Лондоне, и в 8 раз больше, чем в Париже.

Вода из «мороженого». Пастухи туркмены издавна старались зимой получать воду, расплавляя лед, намерзший на источниках солоноватой воды, и, таким образом, экономить пресную воду. Из соленой воды лед получается более пресным, чем сама исходная вода, а иногда и абсолютно пресным. Льдины, которые образуются в море, тоже получаются менее солеными, чем морская вода, а с течением времени могут оказаться совсем без признаков соли.

Объяснить эти давно известные явления оказалось возможным лишь после того, как были поняты некоторые тонкие механизмы кристаллизации, в частности, кристаллизации солевых растворов. Идея получения пресной воды путем замораживания соленой легла в основу многих очень интересных методов и установок. С некоторыми только ведутся эксперименты, другие уже работают и иногда имеют многолетнюю историю.

Еще в тридцатых годах молодой тогда научный сотрудник Института географии Академик наук СССР, впоследствии доктор географических наук, профессор Самуил Юльевич Геллер, много путешествовавший по пустыням Средней Азии, предложил и изготовил чрезвычайно простой опреснитель воды. В нем использовался все тот же принцип замораживания соленой воды, с которым ученый познакомился во время своих путешествий. Основой опреснителя была большая бетонированная площадка с гофрированной поверхностью и невысокими бортами. Площадка располагалась с некоторым наклоном, и в нижней части к ней примыкал большой бетонный резервуар. В зимнее время к концу дня площадку заливали соленой водой, которая за ночь вся промерзала. Днем, когда пригревало солнышко, лед начинал протаивать. При этом сначала с бетонированной площадки стекала соленая вода и на ребрах гофрированной поверхности оставалась практически пресная льдина. При этом необходимо проследить за стекающей водой для того, чтобы после вытекания соленой не пропала бы пресная.

Подобные опреснители, отличающиеся завидной простотой, в то время получили некоторое распространение, они работали в ряде населенных пунктов, уменьшая потребности в привозной пресной воде.

Ясно, что такие опреснительные установки могут работать в течение сравнительно короткого времени года, когда ночью температура воздуха опускается ниже нуля и соленая вода промерзает (она, кстати, замерзает при температуре минус один-два градуса), а днем температура достаточно высока, чтобы лед протаивал. Не говоря о том, что подобное сочетание ночных морозов и дневной жары бывает далеко не во всех районах, нуждающихся в пресной воде. Нельзя считать радикальным решением и другую похожую технологию, когда лед в течение всего холодного периода намораживают в большие глыбы, их закрывают теплоизоляцией, а в более жаркий период постепенно расплавляют.

И все же получение пресной воды из «соленого мороженого», из замерзших, превратившихся в лед минерализованных вод, имеет так много достоинств, что процесс лег в основу новых промышленных методов, иногда довольно сложных и всегда остроумных и эффективных. Во всяком случае, по затратам энергии на литр полученной пресной воды они оказываются выгодней, чем классическое выпаривание, дистилляция, применяемые столь широко. Рентабельность связана с тем, что довести воду до замерзания проще, чем до кипения, и требуется на это меньше калорий: от комнатной температуры в 20 градусов до замерзания, до нуля, значительно ближе, чем до 100 градусов, до кипения. К тому же получение льда не влечет за собой столь неприятный процесс, как образование накипи, удаление которой доставляет массу хлопот на всех дистилляционных опреснителях. Коротко говоря, опреснители, использующие замораживание соленых вод, возможно, станут одним из самых распространенных типов, если удастся создать достаточно простые и надежные их конструкции.

Один из новых методов, на основе которого уже построены опытные установки, связан с процессом замораживания соленой воды путем ее испарения в вакууме. Известно, что если понизить давление над поверхностью воды, то она кипит при более низких температурах. При достаточно низком давлении, то есть в относительном вакууме, вода кипит при нуле градусов, то есть при температуре замерзания. И за счет затрат энергии на образование паров оставшаяся часть воды превращается в лед. Практически, испаряя в этих условиях литр воды, можно около семи литров превратить в лед.

Другой метод — прямое замораживание соленой воды вторичным хладагентом. Один из вариантов реализации метода выглядит так: через воду пропускают жидкий бутан, который, как известно, кипит при очень низкой температуре. Кипящий бутан охлаждает воду и замораживает ее. Из получившегося водяного льда получают пресную воду, а сжатые компрессором пары бутана при повышенном давлении конденсируются, вновь превращаются в жидкость, которая опять может быть использована для получения льда. Процесс организован очень экономно, так, чтобы при любых преобразованиях по возможности использовать имеющуюся энергию. Пары бутана, конденсируясь, отбирают холод у льдинок воды и расплавляют их.

И наконец, еще один метод — газогидратный процесс замораживания. Некоторые углеводороды при вполне определенном давлении и температуре образуют так называемые кристаллогидраты: одна молекула данного вещества присоединяет к себе от семи до восемнадцати молекул воды. Ну а дальше, как говорится, дело техники — нужно лишь отделить и промыть кристаллогидраты, разложить их на газ и воду, газ возвратить в цикл, а воду направить потребителю.

Три последних процесса даже при ультракоротком и сверхупрощенном их описании, бесспорно, производят впечатление чего-то очень сложного и громоздкого. Разве сравнишь их с милым и простым испарением воды или намораживанием льда за счет ночного холода? Однако нужно сказать, что все три процесса тщательно изучаются специалистами, на их основе строятся и уже эксплуатируются опытные установки. Можно не сомневаться, что самые новые эффективные и совершенные системы опреснения воды со временем тоже найдут широкое практическое применение, какими бы сложными ни оказались используемые в них физические процессы. Ибо для многих районов земного шара опреснение соленых вод продолжает оставаться проблемой номер один.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*