KnigaRead.com/

Мичио Каку - Гиперпространство

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Мичио Каку, "Гиперпространство" бесплатно, без регистрации.
Перейти на страницу:

К примеру, допустим, что люди на платформе достают линейку и, пока поезд проезжает мимо, роняют ее на платформу. Пока движется поезд, они бросают линейку так, чтобы оба ее конца ударились о платформу одновременно. Таким образом они могут доказать, что вся длина сжатого поезда от переднего до заднего вагона составляет всего один фут (30 см).

А теперь рассмотрим тот же процесс измерения с точки зрения пассажиров, находящихся в этом поезде. Они считают, что пребывают в состоянии покоя, и видят, как к ним приближается сжатая станция подземки, на платформу которой сжатый человек собирается уронить сжатую линейку. Поначалу не верится, что такой короткой линейкой можно измерить длину целого поезда. Но при падении линейки ее концы достигают земли не одновременно. Один конец линейки касается ее как раз в тот момент, когда станция оказывается у переднего края поезда. И только когда станция двигается мимо всего поезда, второй конец линейки наконец ударяется оземь. Таким образом, одной и той же линейкой измеряется длина всего поезда и в той, и в другой системе отсчета.

Суть этого и многих других «парадоксов» теории относительности в том, что измерительный процесс занимает некоторое время, а пространство и время искажаются по-разному в разных системах отсчета.

39

Уравнения Максвелла выглядят так (мы принимаем с = 1):

Δ · Ε = ρ

Δ x B — дE / дt = j

Δ · B = 0

Δ x E + дB / дt = 0

Вторая и последняя строчка — векторные уравнения, представляющие три уравнения каждое. Следовательно, всего уравнений Максвелла восемь.

Можно переписать их в релятивистской форме. Если ввести тензор Максвелла Fμν= дμAν — дνAμ, тогда уравнения сведутся к единственному:

дμFμν =

Это и есть релятивистский вариант уравнений Максвелла.

40

Процитировано в: Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна», с. 239.

41

Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна», с. 179.

42

Например, представьте, что вы спасатель на пляже. Вы находитесь на некотором расстоянии от воды и краем глаза замечаете, что кто-то тонет в океане на периферии вашего поля зрения. Предположим, что по мягкому песку вы способны передвигаться очень медленно, зато плаваете быстро. Если проделать часть пути до утопающего по прямой, проложенной по песку, это займет слишком много времени. Наименьшее время займет путь, проделанный по ломаной линии, построенной с таким расчетом, чтобы сократить время пробега по песку и преодолеть большую часть расстояния вплавь. — Прим. авт.

43

Процитировано в: Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна», с. 212.

44

Уравнения Эйнштейна выглядят так:

Rμν - 1/2gμνR = -8π / c2 x GTμν

где Tμν — тензор энергии-импульса, измеряющий содержание материи-энергии, a Rμν — свернутый риманов тензор кривизны. Согласно этому уравнению, тензор энергии-импульса определяет степень кривизны, присутствующей в гиперпространстве.

45

Процитировано в: Коул «Ответные вибрации: Размышления о физике как образе жизни» (К. С. Cole, Sympathetic Vibrations: Reflections on Physics as a Way of Life, New York: Bantam, 1985), c. 29.

46

Гиперсферу можно определить во многом тем же способом, как окружность или сферу. Окружность — это совокупность точек, удовлетворяющих уравнению x2 + y2 = r2 в плоскости x-y. Сфера — совокупность точек, удовлетворяющих уравнению x2 + y2 + z2 = r2 в пространстве x-y-z. Четырехмерная гиперсфера определяется как совокупность точек, удовлетворяющих уравнению x2 + y2 + z2 + u2 = r2 в пространстве x-y-z-u. Тот же подход можно легко применить к N-мерному пространству.

47

Процитировано в: Абдус Салам «Обзор физики частиц» см.: «Новая физика», под ред. Пола Дэвиса (Paul Davies, ed., The New Physics, Cambridge, Cambridge University Press, 1989). C. 487.

48

Теодор Калуца «О проблеме объединения в физике» (Theodor Kaluza, Zum Unitatsproblem der Physik, Sitzungsberichte Preusische Akademie der Wissenschaften 96, 1921), c. 69.

49

В 1914 г., еще до того, как Эйнштейн выдвинул общую теорию относительности, физик Гуннар Нордстрём пытался объединить электромагнетизм с гравитацией, обращаясь к пятимерной теории Максвелла. При изучении теории Нордстрёма выясняется, что она правомерно содержит максвелловскую теорию света в четырех измерениях и вместе с тем скалярную теорию гравитации, ошибочность которой известна. В итоге идеи Нордстрёма оказались в целом забытыми. В некотором смысле его публикация была преждевременной. Он написал статью за один год до обнародования теории гравитации Эйнштейна, поэтому никак не мог записать пятимерную теорию гравитации по примеру Эйнштейна.

В отличие от теории Нордстрёма теория Калуцы началась с метрического тензора gμν, определенного в пятимерном пространстве. Затем Калуца отождествил gμ5 с максвелловским тензором Aμ. Прежний четырехмерный метрический тензор Эйнштейна отождествлялся при этом с новым метрическим тензором Калуцы, но только при μ и ν, не равных пяти. Таким простым и элегантным способом поле Эйнштейна и поле Максвелла было помещено в пятимерный метрический тензор Калуцы.

Кроме того, пятимерные теории выдвинули, по-видимому, Генрих Мандель и Густав Ми. Таким образом, высшие измерения занимали заметное место в популярной культуре, что, вероятно, и способствовало перекрестному опылению ими мира физики. В этом смысле труд Римана описал полный круг и вернулся в исходную точку.

50

Питер Фройнд, в беседе с автором, 1990 г.

51

Питер Фройнд, в беседе с автором, 1990 г.

52

Процитировано в: Коул «Ответные вибрации: Размышления о физике как образе жизни» (К. С. Cole, Sympathetic Vibrations: Reflections on Physics as a Way of Life, New York: Bantam, 1985), c. 204.

53

Процитировано в: Найджел Колдер, Ключ к Вселенной (Nigel Calder, The Key to the Universe, New York: Penguin, 1977), c. 69.

54

Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 326.

55

До запуска Большого адронного коллайдера. — Прим. науч. ред.

56

Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 293.

57

Пер. С. Маршака. — Прим. пер.

58

Уильям Блейк «Тигр, о тигр, светло горящий» из «Песен Невинности и Опыта» (Poems of William Blake, ed. W. В. Yeats, London: Routledge, 1905).

59

Пер. М. Пухова. — Прим. пер.

60

SU (special unitary) относится к специальным унитарным матрицам, т. е. тем унитарным матрицам, у которых определитель равен единице. — Прим. авт.

61

Процитировано в: Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 177.

62

Процитировано в: Коул «Ответные вибрации», с. 229.

63

Процитировано в: Джон Гриббен «В поисках кота Шрёдингера» (John Gribben, In Search of Schrodinger’s Cat, New York: Bantam, 1984), c. 79.

64

Период полураспада — время, которое требуется для распада половины вещества. По прошествии двух периодов полураспада остается лишь четверть вещества. — Прим. авт.

65

Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 411.

66

Процитировано в: Найджел Колдер «Ключ к Вселенной» (Nigel Calder, The Key to the Universe, New York: Penguin, 1977), c. 15.

67

Процитировано в: Криз и Манн «Второе сотворение», с. 418.

68

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 327.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*