Ричард Фейнман - 5a. Электричество и магнетизм
(6.32)
Поля повсюду вне сферы будут получаться наложением полей от q, q'и q". Задача решена.
Теперь ясно, что между сферой и точечным зарядом q должна существовать сила притяжения. Она не пропадает, даже если сфера нейтральна, на ней нет никакого заряда. Откуда же берется притяжение? Когда вы подносите к проводящей сфере положительный заряд, то он притягивает отрицательные заряды на ближний конец сферы, положительные же оставляет на дальнем. А притяжение отрицательными зарядами перевешивает отталкивание положительными; в итоге остается притяжение. Силу его можно прикинуть, подсчитав силу, действующую на q в поле, созданном q'и q". Суммарная сила равна силе притяжения между зарядами q и q' = -(a/b)q на расстоянии b-(а2/b) плюс сила отталкивания q и заряда q" = +(a/b)q на расстоянии b.
Если вы в детстве любили разглядывать журнал, на обложке которого был показан мальчик, разглядывающий журнал, на обложке которого показан мальчик, разглядывающий журнал, на обложке которого..., то вас заинтересует и следующая задача. Две одинаковые сферы, одна с зарядом +Q, а другая с зарядом -Q, расположены на некотором расстоянии друг от друга. Какова сила притяжения между ними? Задача решается при помощи бесконечного количества изображений. Первое приближает каждую сферу зарядом в ее центре. Эти заряды создают свои изображения на другой сфере. У изображений в свою очередь есть свои изображения и т. д., и т. д., и т. д. Решение здесь — все равно что картинка на обложке. Сходится оно очень быстро.
§ 10. Конденсаторы; параллельные пластины
Теперь обратимся к другому роду задач, связанных с проводниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутком. Предположим, что пластины наэлектризованы равными, но противоположными зарядами.
Фиг. 6.12. Плоский конденсатор.
Заряды одной пластины будут притягивать к себе заряды другой и потом равномерно распределятся на внутренней поверхности пластин. Пусть поверхностная плотность зарядов на пластинах будет +s и -sсоответственно (фиг. 6.12). Из гл. 5 мы знаем, что поле между пластинами равно s/e0, а поле снаружи пластин равно нулю. Пластины обладают неравными потенциалами j1 и j2. Их разности V удобно дать особое имя, ее часто называют «напряжением»
[некоторые обозначают буквой V потенциал, мы же его обозначили буквой j].
Разность потенциалов V — это работа (на единицу заряда), требуемая для переноса небольшого заряда с одной пластины на другую, так что
(6.33)
где ±Q — суммарный заряд каждой пластины, А — ее площадь, d — щель между пластинами.
Мы видим, что напряжение пропорционально заряду. Эта пропорциональность между V и Q соблюдается для любых двух проводников в пространстве, если на одном из них имеется плюс-заряд, а на другом равный ему минус-заряд. Разность потенциалов между ними, т. е. напряжение, оказывается пропорциональной заряду. (Мы предполагаем, что вокруг нет никаких других зарядов.)
Почему возникает эта пропорциональность? Просто из-за принципа наложения. Пусть нам известно решение для одной совокупности зарядов, а потом мы наложим на него другое такое же решение. Заряды удвоятся, поля удвоятся, работа переноса заряда от точки к точке тоже удвоится. По этой причине разность потенциалов двух точек пропорциональна заряду. В частности, разность потенциалов двух проводников пропорциональна их зарядам. Эту пропорциональность когда-то решили записывать иначе. И стали писать
Q=CV,
где С — постоянное число. Этот коэффициент пропорциональности назвали емкостью, а систему двух проводников — конденсатором. Для нашего конденсатора из параллельных пластин
(параллельные обкладки). (6.34)
Эта формула неточна, потому что поле в противоречии с нашим предположением на самом деле не всюду однородно. Поле не кончается сразу на ребрах пластин, а похоже скорее на то, что изображено на фиг. 6.13. Суммарный заряд тоже равен не sА, как мы предположили; существует маленькая поправка на краевой эффект. Чтобы знать, какова она, надо точнее рассчитать поле и посмотреть, что происходит на краях. Это очень сложная математическая задача, однако ее можно решить при помощи техники, о которой мы, впрочем, говорить здесь не будем. Расчеты показывают, что плотность зарядов возле края пластин слегка возрастает. Это значит, что емкость пластин чуть выше, чем мы думали. [Хорошее приближение для емкости можно получить, если в уравнении (6.34) принять за А площадь, которую имели бы пластины, если б их расширили на 3/8 расстояния между ними.]
Мы говорили пока только о емкости двух проводников. Иногда люди говорят о емкости предмета самого по себе. Так, говорят, что емкость сферы радиусом а есть 4pe0а. При этом подразумевается, что вторым полюсом является сфера бесконечного радиуса, т. е. что если на сфере помещен заряд
+ Q, то противоположным зарядом -Q обладает бесконечно большая сфера. Можно говорить также о емкостях и тогда, когда проводников три или больше трех, но обсуждение этого вопроса мы отложим до лучших времен.
Пусть нам необходимо иметь конденсатор очень большой емкости. Большую емкость можно получить, взяв очень большую
площадь и очень малый промежуток. Можно проложить алюминиевые ленты провощенной бумагой и смотать их в трубку. (Поместив ее в пластмассовую упаковку, мы получим типичный радиоконденсатор.)
Фиг. 6.13. Электрическое поле у краев двух параллельных пластин.
Зачем они нужны? Они пригодны для того, чтобы накапливать заряд. Если бы мы захотели, например, собрать заряд на каком-то шаре, то его потенциал быстро подскочил бы, а вскоре так поднялся бы, что заряды стали бы стекать в воздух, и от шара посыпались бы искры. Но если тот же заряд поместить внутрь конденсатора большой емкости, то напряжение близ конденсатора будет очень малым.
Во многих электронных схемах полезно иметь устройство, способное поглощать или выделять большие количества зарядов, заметно не изменяя потенциал. Вот конденсатор (или «емкость»)— как раз такое устройство. Он имеет множество применений и в электронных приборах и в счетных машинах. Там он используется для получения определенного изменения в напряжении в ответ на то или иное изменение заряда. С подобным применением мы уже познакомились в вып. 2, гл. 23, когда описывали свойства резонансных контуров.
Из определения С мы получаем, что единица емкости есть кулон/вольт. Эту единицу называют также фарадой (ф). А вглядевшись в уравнение (6.34), мы видим, что e0 можно выразить в фарадах/метр (ф/м); эта единица обычно и применяется.
Типичные емкости конденсаторов лежат в интервале от 1 микромикрофарады (мкмкф) [или, что тоже самое, 1 пикофарады (1 пф)] до миллифарад. Небольшие конденсаторы на несколько пикофарад используются в высокочастотных контурах настройки, а емкости порядка сотен или тысяч микрофарад мы находим в силовых фильтрах. Пара обкладок с площадью 1 см2 с промежутком 1 мм имеет емкость примерно 1 пф.
§ 11. Пробой при высоком напряжении
Сейчас мы качественным образом рассмотрим некоторые характеристики полей вокруг проводников. Зарядим электричеством проводник, но на сей раз не сферический, а такой, у которого есть острие или ребро (например, в форме, изображенной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по поверхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пластине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность
означает сильное поле близ проводника в этом месте.
Фиг. 6.14. Электрическое поле у острого края проводника очень велико.
Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рассмотрим комбинацию из большой и маленькой сфер, соединенных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело — уравнять потенциалы сфер. Возле какого шара поле окажется более напряженным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен