KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Андрей Гришаев - Этот «цифровой» физический мир

Андрей Гришаев - Этот «цифровой» физический мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Андрей Гришаев, "Этот «цифровой» физический мир" бесплатно, без регистрации.
Перейти на страницу:

Согласно тому же принципу автономных превращений энергии, нельзя сообщить микрочастице кинетическую энергию, но можно превратить в её кинетическую энергию часть её собственной энергии. Таким образом, кинетическая и собственная энергии частицы образуют ещё одну сопряжённую пару энергий. И, по логике нашего подхода к понятию температуры, при увеличении средней кинетической энергии хаотического движения атомов, повышается температура системы из этих атомов. Но здесь, опять же, остаётся постоянной сумма кинетической и собственной энергий у каждого атома – при условии, что их энергии в других формах остаются прежними.

Так мы приходим к осознанию того, что при выравнивании температур у двух тел, находящихся в тепловом контакте, нескомпенсированная передача энергии от «горячего» тела к «холодному» не происходит. Каждое из этих тел остаётся при своей сумме энергий, а изменяются лишь соотношения в сопряжённых парах энергий, входящих в эти суммы. Не менее поразительный вывод следует применительно к термодинамически изолированной системе: такая система, без взаимодействия с окружающим миром, не может изменить свою суммарную энергию, но вполне может изменить свою температуру – если, в результате некоторых внутренних процессов, изменятся соотношения в сопряжённых парах энергий. Именно с такими процессами имеют дело термохимики, когда они определяют теплоты химических реакций калориметрическим методом – где измеряемой величиной является вовсе не энергия (не калории!), а приращение температуры.

Эта подмена понятий, которая совершается в термохимии, далеко не безобидна. Сущность того, что называется тепловыми эффектами химических реакций, остаётся загадкой, пока используются такие термины, как «выделение или поглощение тепла при химических реакциях». Эти термины вводят в заблуждение: можно подумать, что реакция, идущая «с поглощением тепла», заимствует это тепло из окружения. В действительности же, происходит всего лишь понижение температуры в зоне реакции. Последующий теплообмен с окружением совсем не обязателен – кстати, его и сводят на нет с помощью теплоизолирующих стенок калориметров.

Таким образом, мы приходим к важному выводу: так называемые тепловые эффекты химических реакций являются, в действительности, эффектами повышения или понижения температуры в зоне реакции. Эти повышения-понижения температуры требуют совсем иного объяснения, чем «выделения-поглощения тепла». Прежде чем дать это объяснение (5.11), рассмотрим вопрос об ионизации вещества движущейся заряженной частицей.

5.10. Как происходит ионизация вещества движущейся заряженной частицей.

Среднюю энергию, теряемую заряженной частицей на создание одной пары ионов, находят, деля полные потери энергии на число зарегистрированных ионов – например, по импульсу тока в ионизационной камере или пропорциональном счётчике.

В ранних моделях ионизационных потерь (см., например, [Э1]), рассматривался лишь ударный механизм ионизации. В нерелятивистской области энергий, наиболее вероятными считались столкновения, при которых ионизирующая частица выбивала из атома электрон с малой кинетической энергией, недостаточной для ионизации другого атома – и, лишь в небольшом проценте случаев, электроны, выбитые при первичной ионизации, имели энергию, достаточную для вторичной ионизации. Из этой модели механического выбивания электронов с очевидностью следовали выводы о зависимости средней энергии, теряемой на образование одной пары ионов (или иона плюс электрона), во-первых, от типа ионизирующей частицы – электрона, протона, α-частицы – и, во-вторых, от энергии ионизирующей частицы, поскольку чем больше эта энергия, тем большую кинетическую энергию может иметь выбитый электрон. На практике же всё оказалось иначе. «Наиболее важным экспериментальным фактом… является почти полная независимость энергии, расходуемой на образование пары ионов , от энергии первичного излучения», причём «для α-частиц, протонов, электронов и т.п. она почти одинакова» [Э1] – для различных газов она составляет 2-3 десятка эВ.

Считается, что качественное объяснение независимости  от энергии ионизирующей частицы дал Фано [Д1,М2]. Упрощённо говоря, если ионизирующая частица выбивает электрон, способный произвести одну вторичную ионизацию, то потеря энергии частицей составляет примерно 2, но и ионизаций происходит две – так что, в среднем, потеря на одну ионизацию остаётся примерно постоянной. Эта бесхитростная арифметика не объясняет, однако, независимость  от типа ионизирующей частицы. Между тем, хорошо известно, что, по сравнению с протоном, электрон способен передать выбиваемому электрону гораздо большую часть своей энергии – до половины её. При начальной энергии ионизирующего электрона в 10 кэВ, первый выбитый электрон мог бы иметь энергию почти в 5 кэВ, второй – почти в 2.5 кэВ, и т.д. Тогда ионизирующие электроны должны были бы тормозиться в газах на порядки эффективнее, чем протоны. Однако, известно, что «при малых скоростях потери энергии на единицу пути протона и электрона с одинаковыми скоростями не сильно отличаются друг от друга» [Э1]. А вот конкретные цифры: «в случае ионизации воздуха ударом электрона, протона и α-частицы…[энергии, соответствующие максимуму ионизации,] составляют 110 эВ (e), 1.3·105 эВ (p) и 1.8·106 эВ (α), т.е. различаются соответственно на три и четыре порядка, значения же скорости равны 7.5·108 см/сек (e), 5.0·108 см/сек (p) и 8.0·108 см/сек (α), т.е. имеют одинаковый порядок величины… можно заключить, что положение максимума вероятности ионизации ударом быстрой частицы определяется скорее не величиной её энергии, а её скоростью» [К2].

Это поразительное явление не объяснила и модель пролётной кулоновской передачи импульса выбиваемому электрону: соответствующая формула Бёте [Э1,Д1,М2] сконструирована лишь для случаев ионизирующих частиц с массой, много большей массы электрона. А ведь ионизирующие частицы различаются ещё и по заряду. В формулу Бёте входит квадрат числа элементарных зарядов, которое несёт ионизирующая частица – и α-частица, несущая два элементарных заряда, должна была бы иметь в четыре раза большие ионизационные потери, чем протон. Как уже цитировалось выше, ничего подобного на опыте не наблюдается. Кроме того, до сих пор не объяснён следующий феномен: по мере торможения ионизирующей частицы в веществе, её ионизирующая способность возрастает [Э1,М2]: создаётся всё больше ионов на единицу длины пути – вплоть до достижения максимума, после чего ионизирующая способность частицы быстро сходит на нет. Наконец, загадочным остаётся тот факт, что средние потери на ионизацию, «вопреки наивным ожиданиям, меньше всего для инертных газов, которые имеют наибольшие энергии ионизации» [Э1]. Таким образом, традиционный подход не приводит нас даже к элементарному пониманию механизмов ионизации вещества движущимися заряженными частицами.

На наш взгляд, нерелятивистская заряженная частица ионизирует вещество двумя главными способами. Первый из них – это, как и считали ранние исследователи, ударная ионизация. Однако, ударной ионизацией не объяснить, для подавляющего большинства случаев, картину распределения образующихся ионов вдоль траектории частицы. Речь идёт о случаях, когда ионы оказываются распределены по створу, характерный поперечный размер которого несопоставимо больше центральной «жилки» с поперечником, соответствующим сечению ударной ионизации – причём такая картина получается не только в газах, но и в конденсированных средах, например, в фотоэмульсиях. Эту картину не может дать вторичная ионизация. Действительно, пусть максимальная энергия, которую способна передать электрону налетающая тяжёлая частица, есть 2meV [М2], где me – масса электрона, V – скорость налетающей частицы. Тогда протон с энергией 500 кэВ передавал бы электрону не более 270 эВ. Этого хватило бы, в лучшем случае, на десяток вторичных ионизаций – причём, по мере торможения протона, эта цифра уменьшалась бы. В действительности же, в треках низкоэнергичных протонов (не говоря уже о треках мезонов) ионов на 1-2 порядка больше за пределами центральной «жилки», чем в ней самой – и, по мере торможения протона, число этих «запредельных» ионов на единицу длины увеличивается. Таким образом, нам придётся допустить, что работает какой-то механизм бесстолкновительной ионизации – причём он не основан на кулоновском взаимодействии, поскольку средние потери на ионизацию не зависят от числа элементарных зарядов у ионизирующей частицы (см. выше).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*