Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика.
Гершель, наблюдая за Сатурном, который он любил больше других планет из-за красочных колец, открыл другие спутники, добавленные к уже известным пяти. В 1787 году он открыл два спутника Урана — Титанию и Оберон. В начале XIX века в список известных небесных тел были добавлены малые планеты и астероиды (Церера, Паллада, Веста и Юнона). Пространство, разделявшее Марс и Юпитер, понемногу заполнялось малыми небесными телами. Уже были известны семь больших планет и четырнадцать спутников, включая Луну. И чем больше небесных тел открывали ученые, тем более очевидным становилось понимание: силы притяжения не дестабилизируют Солнечную систему, они не разорвут ее на тысячи кусочков. В течение века вопрос об устойчивости этой системы становился все более насущным.
ВЕКОВЫЕ НЕРАВЕНСТВА ПЛАНЕТ И ИХ СПУТНИКОВ
В «Началах» Ньютон установил, что планеты притягиваются к Солнцу, как спутники — к своим планетам. Точно так же и Солнце притягивается к планетам, а те — к своим спутникам. Эти взаимодействия носят циклический характер; каждое небесное тело подвержено не только силе притяжения Солнца, но и гравитационному взаимодействию с другими телами. Ньютон отметил, что наблюдал эллипс, который описывает Солнце. Но если принять во внимание влияние на него других планет, то можно заметить, что орбита Солнца претерпевала некоторые отклонения, и светило удалялось от намеченного пути. Эта проблема планетных возмущений дала стимул исследованиям в небесной механике в течение XVIII века. Рисунок 1 — это пример подобных возмущений: Земля притягивается Солнцем, которое, в свою очередь, притягивается Юпитером, отклоняясь от своей орбиты.
Эта физическая проблема имела математическую аналогию, называемую «задачей трех тел», или, обобщенно, «задачей п тел», решение которой до сих пор не найдено. Формулировка ее очень проста: определить движение в пространстве каждого из п тел различной массы, подверженных взаимному притяжению. Формулировка проблемы отличается простотой и элегантностью, но о ее решении нельзя сказать того же. В «Началах» Ньютон геометрическими методами решил задачу двух тел для двух сфер, двигающихся под воздействием силы тяготения. В 1734 году Даниэль Бернулли (1700-1782) решил эту задачу аналитически, получив за свою работу премию Академии наук. Наконец, Эйлер рассматривал эту проблему в своем труде Theoria motuum planetarum et cometarum {«Теория движения планет и комет») 1744 года. Решение состояло в том, что два тела перемещались вдоль конических сечений: круга, эллипса, параболы и гиперболы (рисунок 2).
РИС. 1
РИС. 2
Когда была решена проблема n тел для n = 2, математики принялись за решение для n = 3. Речь шла о логическом продолжении рассуждения, позволявшем понять движение системы, образованной Солнцем, Землей и Луной. Ньютон первым, в 1702 году, осуществил прорыв публикацией своей лунной теории. В предисловии он объяснял:
«Долгое время астрономы жаловались на неравномерность движения Луны; и это правда, я всегда сожалел о том, что такая близкая планета к нашей имеет орбиту, удаленную от эллипса».
Однако исследования Ньютона потерпели провал, так как ученый был не в состоянии представить результаты с допустимой погрешностью. Позднее он будет с горечью вспоминать: у него никогда не болела голова, за исключением того времени, когда он проводил исследования Луны. В 1760-х годах Эйлер стал первым, кто в целом изучил проблему трех тел, двигающихся под воздействием взаимного притяжения:
«Проблема сократилась до трех дифференциальных уравнений, которые не только не могут быть никоим образом введены, но для которых очень сложно подобрать приблизительные решения».
Клеро, как и Эйлер, попытался решить задачу трех тел, но при этом жаловался на сложность и закончил тем, что использовал довольно приблизительные решения. Решение этих крайне сложных проблем казалось настолько трудным, что были запущены две параллельные программы исследований. С одной стороны, ученые искали точные решения, а с другой — стремились к общим приблизительным ответам, которые можно было бы использовать в течение некоторого времени, применяя метод теории возмущений, о котором мы говорили.
В 1772 году Лагранж участвовал в конкурсе Академии наук Парижа с работой, посвященной задаче трех тел. Он хорошо понимал, что этот вопрос не мог быть решен посредством интегрирования (в отличие от задачи двух тел), то есть с помощью аналитической функции, которая стала бы общим решением дифференциальных уравнений. Однако ученый предложил несколько других решений. Можно было найти точное решение, в случае если три исследуемых тела находились в определенной конфигурации и два из них имели очень большие массы по сравнению с третьим. Эйлер также предложил решение для случая, когда три тела располагались на одной линии, а Лагранж — когда три тела находились в углах равностороннего треугольника (с тех пор эти точки называют точками Лагранжа). В те годы все эти решения не имели реального смысла и были не чем иным, как математическим развлечением, и только в 1906 году астрономы докажут, что троянские астероиды (крупное скопление небесных тел на орбите Юпитера) образуют с Солнцем и Юпитером именно такое построение. Решения задачи трех тел, полученные чисто теоретическим способом, найдут свое физическое подтверждение более чем через столетие. Сам того не зная, Лагранж решил задачу трех тел для системы, образованной Солнцем, Юпитером и астероидом Ахиллес (см. рисунок на следующей странице).
Таким образом, Лагранж нашел общее приблизительное решение задачи трех тел. Особого интереса заслуживают два случая: система трех тел, образованная Солнцем, Юпитером и Сатурном, и система, состоящая из Солнца, Земли и Луны. Речь шла о том, чтобы объяснить нерегулярное движение нашего спутника, а также движение больших планет Солнечной системы. Если учитывать только силу тяготения Солнца (так как масса этой звезды наиболее значительна в системе), можно утверждать, что орбита каждой планеты представляет собой эллипс. Однако, если добавить силу тяготения других планет, эллиптическая траектория нарушается. Являются ли эти возмущения кумулятивными или они компенсируют друг друга с течением времени?
Требовалось узнать, являются неравенства эллиптического движения планет (используем терминологию Лагранжа и Лапласа) периодическими или вековыми. В первом случае отклонения орбит были бы компенсированы в течение длительного периода времени таким образом, что орбита осталась бы стабильной. Периодические неравенства вызывают искажение орбиты планеты сначала в одном направлении, затем в обратном, таким образом возмущения компенсируются.
Но если мы имеем дело с вековыми неравенствами, то возмущения накапливаются в течение неопределенного времени, пока, наконец, планета не покинет свою эллиптическую орбиту Эта ситуация завершается дестабилизацией Солнечной системы.
Неравенства векового типа вызывают искажения планетных орбит в одном направлении, что влечет нарушение равновесия.
Поскольку эти неравенства наблюдались в течение многих веков, они были названы вековыми. Лаплас был убежден, что основные возмущения планетных орбит (касающиеся их формы и положения, то есть эксцентриситета эллипса и места планеты на орбите) не вековые, а периодические, и они колеблются вокруг некоторых средних значений, не выходя за определенные пределы. Как мы вскоре увидим, Лаплас решит проблему аномалий, наблюдаемых в движении Сатурна, Юпитера и Луны.
В окрестностях точки Лагранжа L4 находится Ахиллес, образующий с Солнцем и Юпитером равносторонний треугольник (его углы равны 60°). В окрестностях других точек Лагранжа (L1 и L2) находятся другие троянские астероиды, расположенные на прямой линии,что соответствует решению Эйлера.
Вначале давайте рассмотрим аномалии движения Юпитера и Сатурна. Галлей в XVII веке констатировал, что Сатурн двигается с явным замедлением и удаляясь от Солнца, а Юпитер — ускоряя свой бег и приближаясь к светилу. Если бы эта тенденция сохранилась, Юпитер в конце концов столкнулся бы с Солнцем, а Сатурн — покинул пределы Солнечной системы.
Подставляя (в уравнение) цифровые показатели для Юпитера и Сатурна, я был удивлен тем, что оно становилось равно нулю.
Лаплас об уравнении, доказывающем постоянство усредненных орбит планет
Между 1785 и 1786 годами Лаплас решил эту загадку, описав ее в своих гениальных трудах под названием «О вековых неравенствах планет и спутников» и «Теория Юпитера и Сатурна». Как и Лагранж, Лаплас понимал, что найти точные аналитические решения задачи трех тел невозможно, поэтому следует прибегнуть к приблизительным решениям. И он сумел предоставить аналитическое выражение для векового неравенства планет. Ему удалось вывести уравнение и обнаружить приятный сюрприз: вековые ускорения планет пропали. Ученый смог разобраться с одним из самых важных феноменов мировой системы и доказать, что неравенства, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими.