Мичио Каку - Физика невозможного
Далее Максвелл задал себе судьбоносный вопрос: если магнитное поле может превращаться в электрическое и наоборот, то что происходит, если они постоянно переходят одно в другое в бесконечной череде превращений? Максвелл обнаружил, что такое электромагнитное поле породит волну, подобную океанской. Он вычислил скорость движения таких волн и, к собственному изумлению, обнаружил, что она равняется скорости света! В 1864 г., обнаружив данный факт, он пророчески написал: «Эта скорость настолько близка к скорости света, что мы, по всей видимости, имеем все основания сделать вывод о том, что сам свет... представляет собой электромагнитное возмущение».
Это открытие стало, возможно, одним из величайших в истории человечества — была наконец раскрыта тайна света! Максвелл внезапно понял, что все — и сияние летнего восхода, и яростные лучи заходящего солнца, и ослепительные цвета радуги, и звезды на ночном небосклоне — можно описать при помощи волн, которые он небрежно изобразил на клочке бумаги. Сегодня мы понимаем, что весь электромагнитный спектр: сигналы радаров, микроволновое излучение и телевизионные волны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские и гамма-лучи — это не что иное, как максвелловы водны; а те, в свою очередь, представляют собой вибрации фарадеевых физических полей.
Говоря о значении уравнений Максвелла, Эйнштейн писал, что это «самое глубокое и плодотворное, что довелось испытать физике со времен Ньютона».
(Трагично, но Максвелл, один из величайших физиков XIX столетия, умер достаточно молодым, в возрасте 48 лет, от рака желудка — вероятно, той же болезни, что убила его мать в этом же возрасте. Проживи он дольше, и возможно, ему удалось бы обнаружить, что полученные им уравнения допускают искажения пространства-времени, и это привело бы прямо к теории относительности Эйнштейна. Мысль о том, что проживи Максвелл дольше, и теория относительности могла бы появиться во времена Гражданской войны в Америке, потрясает до глубины души.)
Максвеллова теория света и атомная теория строения вещества дают оптике и невидимости простое объяснение. В твердом теле атомы плотно упакованы, тогда как в жидкости или газе расстояния между молекулами гораздо больше. Большинство твердых тел непрозрачны, так как лучи света не могут пройти через плотный строй атомов, который играет роль кирпичной стены. Многие жидкости и газы, напротив, прозрачны, потому что свету проще пройти между редкими атомами, расстояния между которыми больше, чем длина волны видимого света. К примеру, вода, спирт, аммиак, ацетон, перекись водорода, бензин и другие жидкости прозрачны, как прозрачны и газы, такие как кислород, водород, азот, углекислый газ, метан и т, п.
Из этого правила существует несколько важных исключений. Многие кристаллы одновременно твердые и прозрачные. Но атомы в кристалле располагаются в узлах правильной пространственной решетки и образуют регулярные ряды с одинаковыми интервалами между ними. В результате в кристаллической решетке всегда много путей, по которым луч света может пройти сквозь нее. Поэтому, хотя атомы в кристалле упакованы не менее плотно, чем в любом другом твердом теле, свет все же способен проникать сквозь него.
При определенных обстоятельствах даже твердый объект со случайно расположенными атомами может стать прозрачным. Такого эффекта для некоторых материалов можно добиться, если нагреть объект до высокой температуры, а затем резко охладить. К примеру, стекло — твердое тело, обладающее из-за случайного расположения атомов многими свойствами жидкости. Некоторые леденцы тоже можно таким образом сделать прозрачными.
Очевидно, свойство невидимости возникает на атомном уровне, согласно уравнениям Максвелла, и потому его чрезвычайно трудно, если вообще возможно, воспроизвести обычными методами. Чтобы сделать Гарри Поттера невидимым, его придется перевести в жидкое состояние, вскипятить и превратить в пар, кристаллизовать, нагреть и охладить — согласитесь, любое из этих действий было бы весьма затруднительным даже для волшебника.
Военные, оказавшись не в состоянии построить невидимые самолеты, попытались проделать более простую вещь: создали технологию «стеле», которая делает самолеты невидимыми для радаров. Технология «стеле», опираясь на уравнения Максвелла, проделывает серию фокусов. Реактивный истребитель «стеле» легко увидеть невооруженным глазом, зато на экране вражеского радара его изображение по размеру примерно соответствует крупной птице. (На самом деле технология «стеле» представляет собой сочетание нескольких совершенно разных фокусов. По возможности материалы конструкции истребителя заменяются на прозрачные для радара: вместо стали используются различные пластики и смолы; изменяются углы фюзеляжа; меняется конструкция сопла двигателя и т.д. В результате всех этих ухищрений можно заставить радарный луч противника, попавший в самолет, рассеиваться во всех направлениях и не возвращаться в приемное устройство. Но даже с применением этой технологии истребитель не становится совершенно невидимым; просто его корпус отклоняет и рассеивает радарный луч настолько, насколько это технически возможно.)
Метаматериалы и невидимостьВозможно, самым многообещающим в плане невидимости из недавних достижений является экзотический новый материал, известный как «метаматериал»; не исключено, что когда-нибудь он сделает объекты на самом деле невидимыми. Забавно, но когда-то существование метаматериалов также считалось невозможным, поскольку они нарушают законы оптики. Но в 2006 г. исследователи из Университета Дьюка в Дарэме (штат Северная Каролина) и Имперского колледжа в Лондоне успешно опровергли это общепринятое мнение и при помощи метаматериалов сделали объект невидимым для микроволнового излучения. Препятствий на этом пути пока хватает, но впервые в истории у человечества появилась методика, позволяющая делать обычные объекты невидимыми. (Финансировало эти исследования DARPA — Агентство перспективных исследовательских проектов Минобороны США.)
Натан Мирволд, бывший главный технолог фирмы Microsoft, утверждает, что революционные возможности метаматериалов «полностью изменят наш подход к оптике и к почти всем аспектам электроники... Некоторые из метаматериалов способны на такие подвиги, которые несколько десятилетий назад показалось бы чудом»
Что представляют собой метаматериалы? Это вещества, обладающие несуществующими в природе оптическими свойствами. При создании метаматериалов в вещество внедряются крошечные имплантаты, которые вынуждают электромагнитные волны выбирать нестандартные пути. В Университете Дьюка ученые внедрили в медные ленты, уложенные плоскими концентрическими кругами (все это немного напоминает по конструкции конфорку электроплитки), множество крошечных электрических контуров. Результатом стала сложная структура из керамики, тефлона, композитных волокон и металлических компонентов. Крошечные имплантаты, присутствующие в меди, дают возможность отклонять микроволновое излучение и направлять его по заданному пути. Представьте себе, как река обтекает валун. Вода очень быстро оборачивается вокруг камня, поэтому ниже по течению его присутствие никак не сказывается и выявить его невозможно. Точно так же метаматериалы способны непрерывно изменять маршрут микроволн таким образом, чтобы они обтекали, скажем, некий цилиндр и тем самым делали все внутри этого цилиндра невидимым для радиоволн. Если метаматериал сможет к тому же устранить все отражения и тени, то объект станет полностью невидимым для этой формы излучения.
Ученые успешно продемонстрировали этот принцип при помощи устройства, состоящего из десяти колец из стекловолокна, покрытых медными элементами. Медное кольцо внутри устройства было почти невидимым для микроволнового излучения; оно лишь отбрасывало слабую тень.
Необычные свойства метаматериалов базируются на их способности управлять параметром, известным как «показатель преломления». Преломление — свойство света менять направление распространения при прохождении через прозрачный материал. Если опустить руку в воду или просто посмотреть через линзы очков, можно заметить, что вода и стекло отклоняют и искажают ход лучей обычного света.
Причина отклонения светового луча в стекле или воде состоит в том, что при входе в плотный прозрачный материал свет замедляется. Скорость света в идеальном вакууме постоянна, но в стекле или воде свет «протискивается» через скопление триллионов атомов и потому замедляется. (Отношение скорости света в вакууме к скорости света в среде называется показателем преломления. Поскольку свет в любой среде замедляется, показатель преломления всегда больше единицы.) К примеру, показатель преломления для вакуума составляет 1,00; для воздуха —1,0003; для стекла—1,5; для бриллианта—2,4. Как правило, чем плотнее среда, тем сильнее она отклоняет луч света и тем больше, соответственно, показатель преломления.