Томас Маклафлин - Обзор ядерных аварий с возникновением СЦР (LA-13638)
В результате аварии через 36 часов наступила смерть оператора, который наблюдал в смотровое окно в момент, когда включился мотор мешалки. Было оценено, что доза облучения верхней части его туловища составила 12000 ± 50 % бэр. Два других человека получили дозы облучения, составлявшие 134 и 53 бэр, и впоследствии это не оказало негативного влияния на их здоровье. Несмотря на то, что удар, вызванный процессом образования пузырей в области, смещенной относительно оси емкости, привел к смещению емкости с опор примерно на 10 мм, не было радиоактивного загрязнения и механического повреждения оборудования.
6. Радиохимический завод, шт. Айдахо, 16 октября 1959 г. 13
Раствор уранилнитрата, U(91 %), в емкости для сбора жидких отходов; многократные всплески мощности; два человека получили значительные дозы облучения.
Данная авария произошла на радиохимическом заводе, который перерабатывал, наряду с другими материалами, облученные тепловыделяющие элементы различных реакторов. Делящийся материал (34 кг обогащенного урана U(91 %) в форме уранилнитрата с концентрацией U примерно 170 г/л) хранился в батарее цилиндрических контейнеров безопасной геометрии. При осуществлении операции воздушного барботирования внезапно произошло сифонирование, в результате чего около 200 л раствора перелилось в резервуар объемом 15400 л, в котором находилось примерно 600 л воды.
Перед аварией проводилась переработка топлива в оболочке из нержавеющей стали путем растворения его в серной кислоте с последующей экстракцией примесей в трех пульсационных колоннах. Между первой и второй ступенями экстракции раствор помещался в две батареи, состоявшие из трубных секций диаметром 125 мм и длиной 3050 мм, которые часто называли «карандашами». Батареи «карандашей» были связаны между собой трубопроводами, от которых шла линия к емкости для сбора жидких отходов объемом 5000 галлонов (18900 л).
Для того, чтобы исключить всякую возможность перетекания растворов самотеком из «карандашей» в резервуар, на высоте 600 мм над уровнем «карандашей» на линии была сделана петля. Передачу растворов в емкость можно было осуществить только в результате целенаправленных действий оператора.
В день аварии операторы, в соответствии с инструкциями, выполняли операцию барботирования раствора для получения однородных проб для анализа. Манометр, установленный на одной из батарей «карандашей», дал показания, соответствующие штатным значениям давления воздуха, прокачиваемого для барботажа. Манометр, присоединенный ко второй батарее, не работал. Дополнительный манометр на этой батарее не был установлен, и оператор начал открывать вентиль подачи воздуха (барботажный вентиль) до тех пор, пока по косвенным признакам он не убедился в том, что барботирование началось. Очевидно, что воздушный барботажный вентиль был открыт так сильно, что жидкость поднялась примерно на 1200 мм от первоначального уровня жидкости в «карандашах» до верхушки петли, идущей к емкости для сбора отходов, что и вызвало сифонирование.
Хотя расход жидкости при сифонировании составлял 13 л/мин, трудно сопоставить его непосредственно со скоростью ввода реактивности, которая зависела также от степени перемешивания. Скорость ввода реактивности могла достигать 25 центов/с. Так как емкость диаметром 2,73 м и длиной 2,63 м лежала на боку, геометрия раствора приближалась к квазибесконечному плоскому слою. Волны в растворе могли вызывать большие флуктуации реактивности системы. После аварии было обнаружено большое количество уранилнитрата, который кристаллизовался на внутренних стенках емкости, а большая часть воды испарилась в систему вентиляции. Последовавшие всплески мощности дали 4 X 1019 делений, что достаточно для того, чтобы выкипела почти половина раствора объемом 800 л, что в результате привело к прекращению всплесков мощности.
О том, как происходили всплески мощности, можно лишь предполагать. В наличии имеются только ленты самописцев системы постоянного контроля воздуха, располагавшихся на разных расстояниях от емкости. Некоторые из самописцев, по-видимому, вышли из строя после того, как были достигнуты очень высокие уровни радиации. На некоторые приборы, находившиеся в более слабых радиационных полях (обычно на большем расстоянии), оказали, возможно, воздействие выделившиеся газообразные продукты деления. Можно достаточно обоснованно предположить, что за первым резким пиком, составившим, по крайней мере, 1017 делений, последовали многократные всплески мощности, и, наконец, на протяжении 15–20 минут происходило кипение. Очень большой выход (4 X 1019 делений) является скорее результатом большого объема системы и относительно большой продолжительности процесса, а не амплитуды в пике мощности в емкости.
Никто из персонала не получил значительной дозы гамма- или нейтронного облучения, так как на установке была мощная радиационная защита. Во время эвакуации персонала из здания были получены следующие дозы облучения от аэрозольных продуктов деления: 50 бэр (один человек), 32 бэра (один человек), меньшие дозы облучения получили 17 человек. Так как эвакуация персонала происходила относительно быстро, общего сигнала об аварийной эвакуации не было; такой сигнал мог подаваться только вручную. Быстрая эвакуация объяснялась тем, что это была ночная смена, персонал был малочисленным и смог быстро покинуть свои рабочие места, после чего все были собраны и проверены на посту охраны. Впоследствии признавалось, что на рабочих местах довольно часто происходило срабатывание локальной аварийной сигнализации, поэтому операторы не уходили со своих мест, пока аварийная сигнализация не срабатывала в другой или даже в третьей точке.
Было также замечено, что персонал пользовался при эвакуации только обычным выходом из здания; никто не воспользовался специально обозначенными маршрутами для эвакуации. Это привело к образованию толпы на выходе. Ситуация была бы гораздо более серьезной, если бы это происходило во время дневной смены, которая по количеству персонала в десять раз превышает ночную. Таким образом, дозы облучения могли быть, наверное, уменьшены, если бы произошла немедленная эвакуация по правильному маршруту. Оборудование повреждено не было.
Комиссии, проводившие расследование аварии, определили ряд факторов, повлиявших на развитие ситуации:
• Операторы плохо знали оборудование, которое редко использовалось, включая батареи «карандашей» и их регулирующие вентили.
• На линии, на которой произошло сифонирование, не было установлено предохранительное устройство. Было отмечено, что такие устройства были установлены на тех емкостях, которые использовались постоянно.
• Инструкции для операторов были противоречивыми, в них недостаточно точно описывались действия оператора, например, не было указано на необходимость осторожного обращения с воздушным барботажным вентилем при осуществлении барботажа.
7. ПО «Маяк», г. Озерск, 5 декабря 1960 г
Раствор карбоната плутония в монжюсе; многократные вспышки мощности; незначительное облучение.
Авария произошла в здании, где перерабатывались растворы для последующего извлечения из них плутония.
В помещении размером 5 м X 6 м X 2,5 м было размещено несколько технологических камер для оксалатной очистки плутония от примесей. В соответствии с регламентом, в данном помещении на установке должны одновременно работать два оператора. Система аварийной сигнализации (САС) в момент аварии находилась в рабочем состоянии. В камеру № 9 поступал азотнокислый раствор плутония из отделения регенерации облученных блоков природного урана. Этот регенерационный раствор плутония с концентрацией плутония несколько граммов на литр подвергался оксалатному осаждению в реакторе большого объема (диаметр 0,5 м, высота 0,9 м, объем 180 л), затем после ряда операций передавался в виде карбонатного раствора на вторую и третью оксалатную очистку в оборудование камеры № 10. В реакторе камеры № 9 измерялись концентрация плутония на основе отбора и анализа проб и объем раствора, что имело большое значение для учета плутония, выполнения технологических регламентов и предотвращения ядерной аварии. Фактически реактор камеры № 9 использовался не только для первой оксалатной очистки, но и для подготовки каждой регламентной операции в камере № 10.
Схема оборудования в камере № 10 представлена на рисунке 13.
Рисунок 13. Схема размещения оборудования в камере № 10.Реакторы Р1 и Р2 предназначены для приема карбонатного раствора из камеры № 9 и для второго оксалатного осаждения плутония. Оба реактора имели одинаковую цилиндрическую геометрию диаметром 0,4 м и высотой 0,5 м. К каждому реактору Р1 и Р2 подведены: 1) линия подачи карбонатного раствора; 2) линия подачи жидких химических реактивов (не показана на рисунке); 3) линия загрузки (через воронку) сухих реактивов в виде порошков; 4) линия выдачи азотнокислого раствора с концентрацией плутония ~100 мг/л (маточник) в сборники для последующего упаривания и переработки (не показаны на рисунке); 5) линия выдачи карбонатного раствора в монжюс. Оба реактора оснащены мешалкой, мерником химреактивов, смотровым устройством, управляющими вентилями, линией вакуума.