KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Иосиф Шкловский - Вселенная, жизнь, разум

Иосиф Шкловский - Вселенная, жизнь, разум

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иосиф Шкловский, "Вселенная, жизнь, разум" бесплатно, без регистрации.
Перейти на страницу:

Трудность проблемы состоит в том, что мы сейчас совершенно ничего не можем сказать, какова вероятность того, что на какой-нибудь планете, где уже возникла жизнь, она когда-нибудь станет разумной. Эта вероятность в самом «оптимистическом» случае может быть близка к единице, но она может быть и очень малой — например, одной миллионной и даже одной миллиардной. Эта проблема была предметом весьма оживленной дискуссии на Бюраканском симпозиуме. Участники дискуссии блистали остроумием, тонкостью и глубиной анализа. К сожалению, это не приблизило нас к пониманию удивительнейшего феномена: каким образом возникшая на планете жизнь становится разумной? В самом «пессимистическом» варианте Земля есть единственная колыбель разумной жизни в Галактике, причем эта разумная жизнь возникла «только что» (разумеется, в космических масштабах времени).

Более естественно, однако, предположить (это предположение, конечно, не доказано), что в Галактике имеется некоторое, хотя бы даже и небольшое, количество цивилизаций, существенно продвинувшихся вперед по пути технического и научного прогресса. В таком случае возникает интересный вопрос: можно ли и каким образом установить между ними связь? Не приходится доказывать огромное значение этого вопроса. Трудно даже представить, какой импульс получило бы человеческое общество в своем развитии, если бы удалось установить связь с какой-нибудь инопланетной цивилизацией, существенно обогнавшей нас по пути научного и технического прогресса.

Вопрос о возможностях связи с другими мирами впервые анализировался Коккони и Моррисоном в 1959 г. Они пришли к выводу, что наиболее естественный и практически осуществимый канал связи между двумя какими-нибудь цивилизациями, разделенными межзвездными расстояниями, может быть установлен с помощью электромагнитных волн. Очевидное преимущество такого типа связи — распространение сигнала с максимально возможной в природе скоростью, равной скорости распространения электромагнитных волн, и концентрация энергии в пределах сравнительно небольших телесных углов без сколько-нибудь значительного рассеяния.

Требование, чтобы электромагнитные волны не испытывали заметного поглощения при распространении как в межзвездной среде, так и в атмосферах планет, сразу же ограничивает возможный диапазон длин волн. Прежде всего, длина волны, на которой осуществляется межзвездная связь, не должна быть слишком большой. В противном случае излучение будет поглощаться межзвездной средой. Коккони и Моррисон считали, что предельная длина волны должна быть около 300 м, что соответствует частоте 1 МГц. Однако такое длинноволновое излучение не будет проходить через атмосферы планет. Оно поглотится в верхних слоях их атмосфер, где газ должен быть частично ионизован. Не приходится сомневаться, что все планеты должны иметь ионосферы. Через такие ионосферы беспрепятственно будет проходить только излучение, длина волны которого меньше 10–15 м. Ограничение со стороны коротких волн обусловлено поглощением, которое вызывается различными молекулами, входящими в состав планетных атмосфер. Уже начиная с длины волны 3 см электромагнитные волны могут поглощаться молекулами водяных паров. Таким образом, согласно Коккони и Моррисону межзвездная связь может в принципе осуществляться только на волнах короче 300 м и длиннее 3 см.

Учет поглощения в планетных атмосферах снижает верхнюю границу этого интервала длин волн до 10–15 м. Необходимо, однако, отметить, что если приемная и передающая аппаратура для межзвездной связи будет вынесена за пределы планетных атмосфер (например, помещена на искусственных спутниках), то диапазон частот, на которых возможно осуществление межзвездной связи, будет значительно расширен.

Следует отметить, что условия распространения электромагнитных волн в межзвездной среде и в планетных атмосферах не являются единственным обстоятельством, определяющим возможные значения длин волн, на которых может осуществляться межзвездная связь. Не меньшее значение имеет уровень помех. Ведь из-за огромных расстояний, разделяющих инопланетные цивилизации, мощности принимаемых сигналов должны быть очень малы. Но сама Вселенная по причинам естественного порядка излучает в той или иной степени на всех диапазонах волн. Если говорить о радиодиапазоне (который, собственно говоря, только и рассматривался Коккони и Моррисоном), то радиоизлучение Галактики и Метагалактики является серьезной помехой для обнаружения слабых сигналов искусственного происхождения. Космическое радиоизлучение имеет непрерывный спектр, причем интенсивность его, рассчитанная на единичный интервал частот, растет с уменьшением частоты.

К числу помех для межзвездной радиосвязи следует отнести также тепловое радиоизлучение планетных атмосфер. Оно особенно существенно на волнах сантиметрового, миллиметрового и субмиллиметрового диапазонов. Наконец, на высоких частотах основными помехами являются квантовые шумы, неизбежные даже для идеальных приемников излучения. Эти шумы есть следствие дискретной «фотонной» природы потоков излучения; их «температурным эквивалентом» является величина hv/k, где h — постоянная Планка, k — постоянная Больцмана, v — частота. На рис. 88 приведена зависимость «температуры шумов» от частоты (пунктирная кривая). Сплошная кривая — шумы, обусловленные излучением молекул атмосферы. Из этого рисунка видно, что минимальный уровень помех (с учетом излучения атмосферы) имеет место для интервала частот 103–104 МГц, что соответствует интервалу длин волн 30—3 см.

Теперь представим себе, что на какой-нибудь планете, обращающейся вокруг некоторой звезды, имеется высокоразвитая цивилизация, которая желает известить о своем существовании. Для этого она посылает в некотором направлении (например, в направлении на звезду, около которой можно ожидать наличие разумной жизни) радиосигнал. Сразу же эта цивилизация столкнется с такой трудностью: звезда, вокруг которой обращается планета — обитель разумной жизни. Является довольно мощным источником радиоизлучения, спектр которого непрерывен. Чтобы искусственный сигнал не «потонул» в радиоизлучении этой звезды, необходимо, чтобы его мощность была по крайней мере сравнима с мощностью радиоизлучения звезды в соответствующем диапазоне.

Будем считать, что звезда излучает в радиодиапазоне, подобно нашему Солнцу, когда на нем нет пятен (так называемое «радиоизлучение спокойного Солнца»). Для определенности будем рассматривать волну 10 см. Известно, что на этой волне спокойное Солнце излучает как нагретое тело с температурой поверхности около 50 тыс. К. Мощность радиоизлучения Солнца WΘ, рассчитанную на единичный интервал частот, можно определить, если воспользоваться формулой Рэлея — Джинса

WΘ = (2πkTb / λ2) 4πRΘ2, где

λ = 10 см — длина волны; k = 1,38 10–16 эрг/град — постоянная Больцмана; RΘ = 7 • 1010 см — радиус Солнца; Tb = 50 тыс. К — яркостная температура спокойного Солнца на волне 10 см. Выполнив вычисления, получим

WΘ = 2,6 1010 эрг/(с • Гц) = 2,6 • 103 Вт/Гц.

Следует иметь в виду, что Солнце излучает на всех частотах, поэтому полная мощность радиоизлучения спокойного Солнца очень велика, порядка десятков миллиардов киловатт. Но искусственный сигнал может иметь очень узкую спектральную полосу, например несколько тысяч или даже несколько сотен герц. Кроме того, Солнце излучает одинаково по всем направлениям, в то время как, пользуясь достаточно большой антенной, можно почти всю мощность искусственного сигнала сосредоточить в пределах узкого конуса, угол раствора которого близок к λ /D (λ — длина волны, D — диаметр зеркала антенны). Этот конус определяет «главный лепесток» антенны (рис. 89). Если, например, пользоваться антенной диаметром 300 м (такие антенны у радиоастрономов имеются), то на волне 10 см обусловленный направленным действием антенны «выигрыш» будет равен:

G = 4πA / λ2,

где A — эффективная площадь антенны, близкая к ее геометрической площади. В нашем случае G ≈ 108. Это означает, что в направлении, перпендикулярном к поверхности зеркала, антенна излучает в 100 млн. раз больше, чем Солнце, при условии, что полная мощность, излучаемая ею по всем направлениям, такая же, как у Солнца.

Следовательно, даже если мощность передатчика будет всего лишь около 10-5 Вт/Гц, сигнал от него в направлении главного лепестка будет примерно такой же, как от Солнца.

Таким образом, собственное радиоизлучение звезд, около которых находятся высокоразвитые цивилизации, практически не может быть помехой для межзвездной радиосвязи. Гораздо более существенной помехой является фон космического радиоизлучения, из которого должен быть выделен сигнал искусственного происхождения. Величина последнего в радиоастрономии определяется так называемой антенной температурой TA:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*