Ли Смолин - Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует
Конечно, это может быть только случайность, что темная материя и темная энергия разделяют общий физический масштаб. Не все совпадения имеют смысл. Так что мы должны спросить, не имеется ли других явлений, где это слабое ускорение может быть измерено. Если так, имеется ли там ситуация, где теория и эксперимент расходятся?
Оказывается, что есть другой такой случай, и он тоже тревожащий. NASA до сегодняшнего дня послало несколько космических аппаратов за пределы Солнечной системы. Среди них два – Пионер 10 и 11 – прослеживались десятилетия. Пионеры были сконструированы для путешествия к внешним планетам, после чего они продолжили движение прочь от Солнца в противоположных направлениях в плоскости Солнечной системы.
Ученые NASA в Лаборатории реактивного движения (Jet Propulsion Laboratory – JPL) в Пасадене, Калифорния, смогли определить скорости аппаратов Пионер с использованием допплеровского сдвига, и, таким образом, смогли точно отследить их траектории. JPL попыталась предугадать траектории с помощью предсказания сил, действующих на аппараты от Солнца, планет и других составляющих Солнечной системы. В обоих случаях наблюдаемые траектории не соответствовали предсказанным.[82] Расхождения были вызваны дополнительным ускорением, притягивающим аппараты в направлении Солнца. Величина этого мистического ускорения была около 8 х 10-8 сантиметра в секунду за секунду – больше, чем величина аномального ускорения, измеренного в галактиках, примерно в 6 раз. Но это все еще довольно близко, учитывая, что тут нет видимой связи между двумя явлениями.
Я должен подчеркнуть, что данные в этом случае еще полностью не приняты. Хотя аномалия наблюдалась у обоих Пионеров, что намного более убедительно, чем если бы это было видно только у одного, они оба были построены и отслеживались JPL. Однако, данные JPL независимо анализировались учеными с помощью Компактной высокоточной программы движения спутников Аэрокосмической корпорации, и эти результаты согласовались с результатами JPL. Так что данные до настоящего времени кажутся правдоподобными. Но астрономы и физики имеют понятно высокие стандарты доказательства, особенно когда мы задаемся вопросом об уверенности в данных, что закон гравитации Ньютона нарушается сразу за пределами нашей Солнечной системы.
Поскольку расхождение мало, может быть возможным оценить его через некоторый мелкий эффект, вроде того, что сторона аппарата, обращенная к Солнцу, была чуть горячее, чем противоположная сторона; или вроде слабой утечки газа. Команда JPL приняла во внимание каждый такой эффект, они были учтены, и до сих пор не удается объяснить наблюдавшееся аномальное ускорение. Недавно были предложения послать наружу специально подготовленный зонд, сконструированный и построенный так, чтобы удалить так много подобных паразитных эффектов, насколько возможно. Такому зонду потребуется много лет, чтобы покинуть Солнечную систему, но даже так, эта миссия стоит затраченного труда. Закон гравитации Ньютона простоял более трех сотен лет; если его удастся или слегка точнее подтвердить, или доказать его неправильность, тогда больше не останется вопросов.
Что если MOND или аномалия Пионеров окажется правильной? Могут ли их данные быть согласованы с некоторой существующей теорией?
По самой меньшей мере, MOND не совместима со всеми версиями теории струн, изученными до сегодняшнего дня. Может ли она быть совместима с некоторой пока не известной версией теории струн? Конечно. Учитывая гибкость теории струн, нет оснований отвергать это, хотя это было бы трудно выполнить. Как насчет других теорий? Некоторые люди с трудностями пытались вывести MOND из сценария мира на бране или некоторых версий квантовой гравитации. Имеется несколько идей, но ни одна из них не работает впечатляюще. Фотини Маркопоулоу, моя коллега по Пограничному институту теоретической физики, и я рассуждали о том, как получить MOND из квантовой гравитации, но мы не смогли показать, как наша идея работает в деталях. MOND является мучительной тайной, но нет никого, кто бы решил ее сегодня, так что будем двигаться к другим подсказкам по новой физике, следующим из эксперимента.
Самые поразительные эксперименты те, которые переворачивают всеми поддерживаемые убеждения. Некоторые убеждения настолько врезались в наше мышление, что они отражены в нашем языке. Например, мы говорим о физических константах, чтобы обозначить те числа, которые никогда не изменяются. Сюда включается большинство основных параметров законов физики, таких как скорость света или заряд электрона. Но являются ли эти константы на самом деле постоянными? Почему не могло бы быть, что скорость света изменяется во времени? И можно ли было бы измерить такое изменение?
В теории мультивселенной, обсуждавшейся в главе 11, мы представляли параметры, изменяющиеся по широкому диапазону различных вселенных. Но как мы можем наблюдать такие вариации в нашей собственной вселенной? Могли бы константы, такие как скорость света, изменяться со временем в нашей вселенной? Некоторые физики указывали, что скорость света измеряется в некоторой системе единиц – то есть, столько-то километров в секунду. Как, они утверждали, вы можете различить изменение скорости света со временем в ситуации, в которой сами единицы изменяются со временем?
Чтобы ответить на этот вопрос, нам нужно узнать, как определяются единицы расстояния и времени. Эти единицы основываются на некоторых физических стандартах, которые определяются в терминах поведения некоторых физических систем. Сначала стандарты ссылались на Землю: метр был одной миллионной долей расстояния от Северного полюса до экватора. Теперь стандарты базируются на свойствах атомов – например, секунда определяется в терминах колебаний атома цезия.
Если вы приняли во внимание, как определяются единицы, тогда физические константы определяются через соотношения. Например, скорость света может быть определена, если вы знаете отношение между временем, которое требуется свету, чтобы пересечь атом, и периодом света, который испускает атом. Эти виды отношений являются одними и теми же во всех системах единиц. Отношение ссылается чисто на физические свойства атомов; в его измерении не содержится решения по поводу выбора единиц. Поскольку отношения определяются в терминах одних только физических свойств, имеет смысл спросить, изменяются ли эти отношения во времени, или нет. Если изменяются, то тогда во времени изменяются и взаимоотношения между одними физическими свойствами атома и другими.
Изменения в этих отношениях могли бы быть измеримы через изменения в частотах света, испускаемого атомами. Атомы испускают свет в спектре, состоящем из многих дискретных частот, так что имеется множество отношений, определенных парами этих частот. Можно спросить, не отличаются ли эти отношения в свете от удаленных звезд и галактик – то есть, в свете, который имеет возраст в миллиарды лет.
Эксперименты такого рода не смогли обнаружить изменения в константах природы внутри нашей галактики или среди близлежащих галактик. На масштабе времени в миллионы лет, таким образом, константы не изменяются никаким обнаружимым образом. Но непрерывно продолжающийся эксперимент группы из Австралии нашел изменения в отношениях, рассматривая свет от квазаров – свет, который был излучен примерно 10 миллиардов лет назад. Австралийские ученые не изучали атомные спектры самих квазаров; то, что они делали, более остроумно. На пути от квазара до нас свет путешествовал через многие галактики. Каждый раз, когда он проходил через галактику, некоторое количество света поглощалось атомами этой галактики. Атом поглощают свет на особых частотах, но из-за эффекта Допплера частота, на которой свет был поглощен, сдвинута в направлении красного конца спектра на величину, пропорциональную расстоянию от галактики до нас. В результате спектр света от квазара был декорирован лесом линий, каждая из которых соответствовала свету, поглощенному галактикой на определенном расстоянии от нас. Изучая отношения частот этих линий, мы можем поискать изменения в фундаментальных константах за время, в течение которого свет путешествовал от квазара. Поскольку изменения должны проявиться как отношения частот и имеется несколько фундаментальных констант, физики взялись за изучение простейшего отношения – постоянной тонкой структуры, которая составлена из констант, определяющих свойства атома. Ее называют альфа, и она равна квадрату заряда электрона, деленному на скорость света и на постоянную Планка.
Австралийцы изучили измерения света от восьмидесяти экземпляров квазаров, используя очень точные измерения, полученные телескопом Кека (Keck) на Гавайях. Они вывели из своих данных, что около 10 миллиардов лет назад альфа была меньше примерно на 1 часть из 10 000.[83]