KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.

Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных.". Жанр: Физика издательство -, год -.
Перейти на страницу:

Оказалось, однако, что притягивающая природа гравитации делает такой сценарий невозможным. Британские физики Роджер Пенроуз и Стивен Хокинг, тогда еще аспиранты, доказали серию теорем, показывающих, что в очень широком диапазоне условий космологической сингулярности избежать нельзя. Основные предположения, использованные в этих доказательствах, состоят в том, что общая теория относительности Эйнштейна верна и что материя во всей Вселенной обладает положительными плотностью энергии и давлением. (Более строго: давление не должно столь существенно уходить в отрицательные значения, чтобы гравитация становилась отталкивающей.) Таким образом, пока мы держимся в рамках общей теории относительности и не предполагаем существования экзотической гравитационно отталкивающей материи, сингулярность будет при нас, а вопрос о начальных условиях останется неразрешенным.

Самой известной попыткой избежать этой проблемы была, без сомнений, теория стационарного состояния, выдвинутая в 1948 году в Кембриджском университете британским астрофизиком Фредом Хойлом и двумя австрийскими эмигрантами Германом Бонди и Томасом Голдом. Они настаивали, что в своих общих чертах Вселенная всегда остается неизменной, так что во всех местах и во все времена она выглядит более или менее одинаково. Может показаться, что этот взгляд находится в резком противоречии с расширением Вселенной: если расстояния между галактиками растут, как Вселенная может оставаться неизменной? Чтобы компенсировать расширение, Хойл с друзьями постулировали, что вещество постоянно создается из вакуума. Это вещество заполняет пустоты, открывающиеся между удаляющимися галактиками, так что на их месте могут формироваться новые. Кембриджские физики признавали что у них нет подтверждений спонтанного рождения материи, однако требуемый темп ее возникновения был столь низким — всего несколько атомов на кубический сантиметр в столетие, — что нет и наблюдений, свидетельствующих против него. Защищая свою теорию, они ссылались на то, что непрерывное возникновение материи, по их мнению, было ничуть не более сомнительным, чем одномоментное рождение всей материи в большом взрыве. Кстати, сам термин "Большой взрыв" был придуман именно Хойлом, когда он высмеивал конкурирующую теорию в популярном ток-шоу на радио "Би-Би-Си".

Впрочем, и теория стационарного состояния вскоре столкнулась с серьезными трудностями. Самые далекие галактики видны такими, какими они были миллиарды лет назад, поскольку столько времени нужно свету, чтобы добраться до нас. Если верна теория стационарного состояния и Вселенная в то время была такой же, как сегодня, тогда далекие галактики должны быть более или менее похожи на те, что наблюдаются в наших окрестностях. Однако по мере накопления данных становится все более очевидно, что находящиеся вдалеке галактики в действительности совсем другие и показывают отчетливые признаки своей молодости. Они меньше, имеют неправильные формы и населены очень яркими короткоживущими звездами. Многие из них являются мощными источниками радиоволн, что гораздо реже встречается среди близких к нам галактик.[16] По-видимому, нет никакой возможности объяснить эти наблюдения в рамках теории стационарного состояния.

Шерлок Холмс любил говорить: "Отбросьте все невозможное; то, что останется, и будет ответом, каким бы невероятным он ни казался".[17] По мере того как перспективы теории стационарного состояния становились все более туманными и за отсутствием в поле зрения других жизнеспособных альтернатив, представления стали меняться. Физики постепенно склонялись к картине эволюционирующей Вселенной, начавшейся со взрыва.

Глава 4

Современная история сотворения мира 

Элементы были приготовлены быстрее, чем готовится утка с жареной картошкой.

Георгий Гамов

Туннелирование сквозь железный занавес

Идея первичного огненного шара родилась в голове Георгия Гамова, очень колоритного физика российского происхождения, с которым мы еще не раз встретимся на этих страницах. Его коллега Леон Розенфельд (Leon Rosenfeld) писал, что это был "славянский гигант с огненной шевелюрой, очень ярко говорящий по-немецки; в действительности он был ярок во всем, даже в своей физике".[18] Еще аспирантом Гамов прослушал фридмановский курс лекций по общей теории относительности в 1923-1924 годах в Петрограде, так что знал о расширяющейся вселенной, можно сказать, из первых рук. Он хотел вести исследования в области космологии под руководством Фридмана, однако неожиданная смерть последнего не позволила этим планам реализоваться. В итоге Гамову пришлось писать диссертацию по динамике маятника — теме, которую он называл "в высшей степени унылой".[19]

В 1928 году с подачи своего прежнего профессора Ореста Хвольсона Гамов получил стипендию и провел лето в Германии, в Геттингенском университете. Это было время, когда полным ходом шла разработка квантовой механики, и Геттинген являлся одним из ведущих центров этих исследований. Физики пытались ухватить суть новой теории и внести вклад в ее стремительное развитие. Дискуссии, начинавшиеся днем в семинарских аудиториях, продолжались вечерами на улицах и в кафе, и было трудно не заразиться этой волнующей атмосферой открытия. Гамов решил исследовать, что может сказать квантовая механика о строении атомных ядер, и очень быстро получил первые результаты. Он использовал так называемый туннельный эффект — проникновение квантовой частицы через барьер — для объяснения радиоактивного распада ядер. Его теория прекрасно согласовывалась с экспериментальными данными.

Когда в конце лета пришло время возвращаться в Петроград (уже ставший Ленинградом), Гамов решил сделать остановку в Дании и посетить легендарного Нильса Бора, одного из основоположников квантовой теории. Рассказ о работе по радиоактивности (которая еще не была опубликована) произвел на Бора такое впечатление, что он предложил Гамову место научного сотрудника в своем институте в Копенгагене. Конечно, приглашение было с восторгом принято, и Гамов продолжил работу в области ядерной физики, став вскоре признанным авторитетом.

В 1930 году Гамова пригласили сделать большой доклад на конгрессе по атомному ядру в Риме. Он уже готовился пересечь Европу на своем маленьком мотоцикле, когда выяснил в советском посольстве, что его паспорт не подлежит продлению и ему придется вернуться в Советский Союз, прежде чем ехать куда-либо еще. Прибыв в Ленинград, Гамов сразу понял, что дела плохи. Сталинский режим закручивал в стране гайки. Наука и искусство должны были соответствовать официальной марксистской идеологии, и всякий, кого обвиняли в "буржуазных" идеалистических взглядах, подвергался жестоким преследованиям. Квантовая механика и теория относительности Эйнштейна были объявлены ненаучными и противоречащими марксизму-ленинизму. Когда Гамов упомянул о квантовой физике на публичной лекции, сотрудник органов прервал его выступление и распустил аудиторию. Гамова предупредили, чтобы он не повторял таких ошибок. Еще до этого инцидента ему было велено забыть о зарубежных поездках и не утруждать себя обращениями за паспортом. Железный занавес плотно закрылся. Гамов понял со всей ясностью: он должен любой ценой вырваться из Советского Союза.

Вместе со свой женой Любой, которая вышла за него вскоре после возвращения в Ленинград, он готовился к побегу. План состоял в том, чтобы пересечь Черное море и добраться в Турцию из Крыма. Идея эта кажется ребяческой, но они намеревались проделать это на байдарке. У Гамовых был недельный запас провизии и простой навигационный план: грести прямо на юг. Однако Черное море не зря называют черным. Ранним утром, затемно, когда двое искателей приключений отправились в путь, оно было идеально спокойным, но к вечеру ветер усилился, и поднялась волна. Ночью им с колоссальным трудом удавалось удерживать лодку на плаву. Признав свое поражение, они теперь стремились просто добраться до берега, и когда на следующий день им это удалось, чувствовали себя счастливчиками.

Когда летом 1933 года Гамову сообщили, что ему доверено представлять Советский Союз на престижном Сольвеевском конгрессе по ядерной физике в Брюсселе, это стало для ученого полной неожиданностью. Он был вне себя от восторга, но не понимал, как это получилось. Все объяснилось после прибытия на конгресс. Когда Гамов не появился в Риме, Нильс Бор забеспокоился и стал разыскивать своего старого друга. Он попросил французского физика Поля Ланжевена, члена Французской коммунистической партии, использовать свои связи, чтобы организовать приезд Гамова на Сольвеевский конгресс. Однако Гамов был потрясен, когда узнал, что Бор лично поручился Ланжевену за Гамова, пообещав, что тот вернется в Советский Союз! В тот вечер за ужином Гамов оказался за столом рядом с Марией Кюри, знаменитой первооткрывательницей радия и плутония, и рассказал ей о невыносимой ситуации, в которую попал. Мадам Кюри близко знала Ланжевена (ходили слухи, что даже очень близко); она сказала, что поговорит с ним. После бессонной ночи и дня тревожного ожидания Гамов узнал от нее, что вопрос улажен и он может не возвращаться. На следующий год он получил пост профессора в университете Джорджа Вашингтона в Соединенных Штатах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*