KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "Фейнмановские лекции по физике 1. Современная наука о природе, законы механики" бесплатно, без регистрации.
Перейти на страницу:

из закона тяготения, и увидим в конце концов, что останется как раз производная по времени от

Начинаем доказательство. Производная кинетической энергии по времени есть

Производная по времени от потенциальной энергии есть

но

так что

потому что rij=-rji, хотя rij=r}i . Итак,

Теперь внимательно посмотрим, что значит

и означает, что i принимает по порядку

все значения i=1, 2, 3,…, и для каждого i индекс j принимает все значения, кроме i. Если, например, i = 3, то j принимает значения 1, 2, 4, ….

С другой стороны, в (13.16) ? означает, что каждая пара i и j встречается лишь однажды. Скажем, частицы 1 и 3 дают только один член в сумме. Чтобы отметить это, можно договориться, что i принимает значения 1, 2, 3, …, а j для каждого i – только значения, большие чем i Если, скажем, i=3, то j равно 4, 5, 6, …. Но вспомним, что каждая пара i, j дает два слагаемых в сумме, одно с vi, а другое с vj, и что оба эти члена выглядят так же, как член в уравнении (13.14) [но только в последнем в сумму входят все значения i и j (кроме i=j)]. В уравнениях (13.16) и (13.15) член за членом совпадут по величине. Знаки их, однако, будут противоположны, так что производная по времени от суммы потенциальной и кинетической энергий действительно равна нулю. Итак, мы видим, что и в системе многих тел кинетическая энергия составляется из суммы энергий отдельных тел и что потенциальная энергия тоже состоит из взаимных потенциальных энергий пар частиц. Почему она складывается из энергий пар? Это можно уяснить себе следующим образом: положим, мы хотим найти всю работу, которую нужно совершить, чтобы развести тела на определенные расстояния друг от друга. Можно это сделать не за один раз, а постепенно, доставляя их одно за другим из бесконечности, где на них никакие силы не влияли. Сперва мы приведем тело 1, на что работы не потребуется, потому что, пока нет других тел, силы отсутствуют. Доставка тела 2 потребует работы W12 =-Gm1m2/ri2. И вот теперь самый существенный момент: мы доставляем тело 3 в точку 3. В любой момент сила, действующая на 3, слагается из двух частей: из силы, действующей со стороны 1, и силы со стороны 2. Значит, и вся произведенная работа равна сумме работ каждой из сил, потому что раз F3 разбивается на сумму сил

F3= F13+F2

то работа равна

Стало быть, вся работа равна сумме работ, произведенных против силы 1 и против силы 2, как если бы они действовали независимо. Продолжая рассуждать таким образом, мы увидим, что полная работа, которую необходимо выполнить, чтобы собрать данную конфигурацию тел, в точности равна значению (13.14) для потенциальной энергии. Именно из–за того, что тяготение подчиняется принципу наложения сил, можно потенциальную энергию представить в виде суммы по всем парам частиц.

§ 4. Поле тяготения больших тел

Теперь рассчитаем поля, встречающиеся во многих физических задачах, когда речь идет о распределении масс. Мы пока не рассматривали распределения масс, а занимались только отдельными частицами. Но интересно рассчитать и поля, образуемые более чем одной частицей. Для начала найдем силу притяжения со стороны плоского пласта вещества бесконечной протяженности. Сила притяжения единичной массы в данной точке Р (фиг. 13.5), конечно, направлена к плоскости. Расстояние от точки до плоскости есть a, а масса единицы площади этой плоскости есть ?., где ?=m/4?a2 – поверхностная плотность массы. (Вообще площадь поверхности шарового пояса пропорциональна его высоте.) Поэтому потенциальная энергия притяжения массы dm есть

Но мы видим, что

Значит,

2rdr=-2Rdx,

или

Поэтому

и получается

Стало быть, для тонкого слоя потенциальная энергия массы m', внешней по отношению к слою, такова, как если бы масса слоя собралась в его центре. Землю же можно представить в виде ряда таких слоев, и притяжение каждого из слоев зависит только от его массы; сложив их, получим всю массу планеты; значит, и вся Земля действует так, словно все ее вещество находится в ее центре!

Но посмотрим, что произойдет, если точка Р окажется внутри слоя. Проделывая те же расчеты вплоть до интегрирования, мы получим разность двух значений r, но уже в другой форме: (a+R)-(а–R)=2R (двойное расстояние от Р до центра). Другими словами, теперь W становится равной W=-Gmm'/a, что не зависит от R, т. е. точка Р всюду внутри сферы обладает одной и той же энергией тяготения. А значит, на нее не действует никакая сила, и не нужно никакой работы, чтобы двигать ее внутри. Когда потенциальная энергия тела всюду, в любой точке внутри сферы, одинакова, то на тело не действует никакая сила. Внутри сферы тело не испытывает действия сил, сила действует только снаружи.

*Энергия в единицах табл. 9.2 есть ?(v2x+v2y)-1/r

Глава 14

РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)

§1. Работа

§2. Движение при наложенных связях

§3. Консервативные силы

§4. Неконсервативные силы

§5. Потенциалы и поля

§ 1. Работа

В предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны, что, пожалуй, стоит посвятить целую главу внимательному ознакомлению с ними. Мы не будем здесь повторять «доказательства» и красивые приемы, позволяющие просто получать важные результаты, а вместо этого сосредоточим наше внимание на обсуждении самих идей.

Штудируя любой вопрос технического характера, для понимания которого нужна математика, мы всегда сталкиваемся с необходимостью понять и отложить в памяти массу фактов и идей, объединенных определенными связями, Существование этих связей можно «доказать или «показать». Ничего не стоит спутать само доказательство с тем соотношением, которое оно устанавливает. Конечно, куда важнее выучить и запомнить не доказательство, а само соотношение. Тогда уж в любом случае мы сможем сказать: «Легко показать, что…» то–то и то–то верно, а то и действительно показать это, Приводимые доказательства почти всегда состряпаны, сфабрикованы с таким расчетом чтобы, во–первых, их легко было воспроизвести мелом на доске или пером на бумаге и, во–вторых, чтобы они выглядели поглаже. В итоге доказательство выглядит обманчиво просто, хотя, быть может, на самом деле автор много часов искал разные пути расчета, пока не нашел самый изящный – тот, который приводит к результату за кратчайшее время! Глядя на вывод формулы, надо вспоминать не этот вывод, а скорее сам факт, что то–то и то–то можно доказать. Конечно, если доказательство требует особых математических выкладок или «трюков», никогда прежде не виденных, то надо обратить внимание… впрочем, не на сами трюки, а на их идею.

Ни одно из доказательств, приведенных в этом курсе, автор не запомнил с тех времен, когда сам учил физику. Наоборот, он просто вспоминает, что то–то является верным, и, пытаясь пояснить, как это доказывается, сам придумывает доказательство в тот момент, когда оно необходимо. И всякий, кто действительно изучил предмет, должен быть в состоянии поступать так же, не запоминая доказательств. Вот почему в этой главе мы будем избегать вывода различных положений, сделанных ранее, а просто будем подводить итоги.

Первая идея, которую нужно будет переварить, – это то, что работа производится силой. Физический термин «работа» ничего общего не имеет с общежитейским ее смыслом…

Физическая работа выражается в виде ?F•ds, или «контурный интеграл от F по ds «скалярно»; последнее означает, что если сила направлена, скажем, в одну сторону, а тело, на которое сила действует, перемещается в другую сторону, то работу совершает только составляющая силы в направлении перемещения. Если бы, например, сила была постоянна, а смещение произошло на конечный отрезок ?s, то работа, выполненная постоянной силой на этом пути, была бы равна произведению составляющей силы вдоль ?s на ?s. Правило гласит: «работа есть сила на путь», но подразумевается лишь составляющая силы в направлении перемещения, умноженная на ?s, или, что одно и то же, составляющая перемещения в направлении силы, умноженная на F.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*