KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Педро Феррейра - Идеальная теория. Битва за общую теорию относительности

Педро Феррейра - Идеальная теория. Битва за общую теорию относительности

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Педро Феррейра, "Идеальная теория. Битва за общую теорию относительности" бесплатно, без регистрации.
Перейти на страницу:

Враждебность по отношению к теории струн проявилась в 2011 году, когда Майкл Грин, сменивший Хокинга на должности Лукасовского профессора, решил прочитать в Оксфорде лекцию по этой теме. В 1984-м году именно Грин вместе с Джоном Шварцем дал толчок к развитию теории струн, а в начале 1990-х я присутствовал на его коллоквиуме в Лондоне, прошедшем с огромным успехом. Занимающиеся этой темой теоретики тогда были на коне. На этот раз в Оксфорде царила куда более холодная атмосфера. Большинство вопросов касалось деталей выступления, но проскакивали и откровенно колкие насмешки. Сейчас ни одна публичная лекция по теории струн не обходится без неизбежного вопроса: «Допускает ли эта теория проверку?». И задается он всегда лицами, принадлежащими к лагерю противников теории струн.

Пока еще нельзя сказать, когда же антагонизм между различными группами, работающими над квантовой гравитацией, изживет себя. Некоторое время противники теории струн со своими версиями квантовой гравитации были далеки от процветания, но сейчас, по всей видимости, гонения начались уже и на сторонников этой теории.

Примечательным результатом борьбы стала популяризация квантовой гравитации среди широкой публики. Война между каноническим и ковариантным подходами попала даже в телесериал «Теория большого взрыва». Персонажи разрывают свои отношения, потому что не могут договориться, какому подходу следует учить их детей. Как говорит Лесли Уинкл Леонарду Хофстедеру, выбегая из комнаты: «Это камень преткновения».

Через тридцать лет после того как Стивен Хокинг предсказал конец физики, а затем обрушил на ничего не подозревающий мир парадокс, связанный с исчезновением информации в черных дырах, квантовая теория гравитации так и не появилась, не говоря уже о единой теории фундаментальных взаимодействий. Но несмотря на раздоры при поиске квантовой гравитации, общность взглядов тоже присутствует. Возник новый и практически общепринятый взгляд на природу пространства-времени. Сторонники всех подходов, от теории струн и петлевой квантовой гравитации до более узконаправленных идей квантования общей теории относительности, отказываются от пространства-времени как от фундаментальной сущности. Возможно, это понимание можно напрямую связать с открытым Хокингом излучением черных дыр и оно поможет решить проблему исчезновения информации в черных дырах заодно с проблемой утраченной физикой возможности прогнозирования. Для устранения парадокса Хокинга нужно первым делом понять, каким образом черные дыры хранят поглощенную ими информацию и в каком виде они могут отдавать ее в окружающий мир. Но для этого уже недостаточно построенной на общей теории относительности наивной модели, ограничивающейся только горизонтом событий. Как ни странно, пролить свет на этот вопрос в какой-то степени могут петлевая квантовая гравитация и теория струн совместно с менее распространенными и менее известными подходами к квантовой гравитации.

В петлевой квантовой гравитации пространство-время дробится на мелкие части, причем существует некий минимальный размер, после которого уже не имеет смысла говорить о таких понятиях, как площадь и объем. Ли Смолин, Карло Ровелли и Кирилл Краснов из Ноттингемского университета показали, что эта теория позволяет разделить площадь черной дыры на микроскопические фрагменты, каждый из которых хранит бит информации как экран с цифровыми данными. Энтузиасты петлевой квантовой гравитации утверждают, что сложение этих фрагментов дает корректное значение энтропии черной дыры.

Приверженцы теории струн смотрят на вещи немного под другим углом. Эндрю Строминджер и Камра Вафа из Гарварда показали, что текущее воплощение теории струн — М-теория — также позволяет вывести точное соотношение между энтропией, информацией и площадью черной дыры. Для конкретного типа черной дыры они смогли показать, как объединение определенных типов бран дает возможность сохранить нужное количество информации. Враны предоставляют черной дыре микроструктуру, точно подходящую для разрешения парадокса Хокинга. В более общем виде они считают, что черная дыра представляет собой бурлящую смесь струн и бран, напоминающую запутанный клубок, концы и края которого бьются о горизонт. И эти биты бран и струн, отскакивающие от горизонта событий, могут использоваться для восстановления всей хранящейся в черной дыре информации. И снова сложением цифр получается корректное значение энтропии.

Создается впечатление, что при всем своем отличии и петлевая квантовая гравитация, и теория струн находятся на верном пути к разрешению информационного парадокса. Потому что если горизонт событий и в самом деле хранит информацию, именно она может являться топливом для испускаемого черной дырой излучения Хокинга, которое выводит информацию в окружающий мир по мере того, как сама дыра медленно испаряется. Тогда к завершению этого процесса вся изначально поглощенная информация возвращается и речи о ее потере больше нет.

Приверженцы теории струн весьма смело и настойчиво утверждают, что обнаружили связанное с излучением Хокинга еще более глубокое свойство физических теорий. Черные дыры кажутся странными, так как количество сохраняемой ими информации, хотя и связано с энтропией, является функцией не объема, как наивно можно было бы ожидать, а площади поверхности — впрочем, это еще в середине 1970-х утверждали Бекенштейн и Хокинг. Но в более общем виде это означает, что максимальное количество информации, которое можно сохранить в произвольном объеме пространства, всегда ограниченно. Чтобы найти это максимальное количество, следует взять гипотетическую черную дыру, занимающую в пространстве определенный объем, и посчитать, сколько информации в состоянии сохранить ее поверхность. Таким образом, вместо описания физики фрагмента пространства достаточно определить, что происходит на окружающей это пространство поверхности, — примерно как двумерная голограмма может содержать все данные о трехмерной сцене. Но если подобное верно для фрагмента пространства, оно должно быть верным везде, в том числе для Вселенной как целого. В подобной голографической Вселенной поведение пространства-времени в отдельных точках становится уже неважным.

Это свойство является настолько поразительным, что Эдвард Виттен и ряд его коллег, занимающихся теорией струн, объявили пространство-время «приблизительной, производной классической концепцией», не имеющей смысла на квантовом уровне. Создается впечатление, что при любом подходе к квантовой гравитации на наиболее фундаментальном уровне пространства-времени не существует.

Когда в 1950-х Джон Уиллер со своими студентами начал задумываться о пространстве-времени и квантах, он предположил, что если бы пространство можно было рассмотреть через невероятный сверхмощный микроскоп, оказалось бы, что «локально пространство напоминает пену». Его прозорливости можно только удивляться, но в свете вещей, которые мы только начинаем понимать, даже Уиллер выглядит консерватором. Однако даже пена дает только начальное представление о сложности явления, порождающего пространство-время.

Кажется, пора пересмотреть одну из основных идей, лежащих в основе великой теории Эйнштейна, — само пространство-время. По-видимому, кванты раздвинули общую теорию относительности до границ ее применимости, и следует выработать совершенно новый стиль мышления. Есть и другие намеки на то, что теория Эйнштейна больше не сможет ничего рассказать нам ни о пространстве, ни о времени, ни о Вселенной в целом. Как в свое время отметил Уиллер, именно доведя теорию до границ применимости, мы получаем новые и удивительные результаты. Только при таких условиях рано или поздно проявится нечто большее и лучшее, способное в итоге занять место великого открытия Эйнштейна.


Глава 13.

Показная экстраполяция

Я только что закончил читать лекцию и стоял вместе со слушателями в главном зале Института астрономии Кембриджского университета, попивая дешевое вино из пластикового стаканчика. Мы собирались группами, перемещаясь по залу и пытаясь завязать оживленный разговор. Лекция, которую меня пригласили прочитать, рассказывала об измененной гравитации и описывала класс теорий, предложенных, чтобы избавиться от общей теории относительности при объяснении ряда космологических загадок. Во время лекции никаких сюрпризов не было. В начале лекции я запнулся, опровергая комментарий о темной материи, но благополучно вышел из положения. Никто не говорил, что я не прав, никто не надоедал вопросами, и я собрался отправиться домой в Оксфорд.

Однако ко мне, сверкая глазами и размахивая белым пластиковым стаканчиком как оружием, приблизился директор института Джордж Эфстатиу. «Спасибо, что приехал, — сказал он, — выступление было интересным. Должен сказать, что это была хорошая лекция на реально глупую тему». Я вежливо улыбнулся в ответ на его хлопок по моей спине. С подобной реакцией я сталкивался не в первый раз, так что удивляться не приходилось. Эфстатиу играл важную роль в проработке деталей развития темной материи при формировании крупномасштабной структуры. Кроме того, он одним из первых начал утверждать, что распределение галактик свидетельствует о космологической константе. Быстро поднимающийся по карьерной лестнице Эфстатиу был преуспевающим и уверенным в себе человеком. «Приступив к руководству институтом, я попытался объявить его зоной, свободной от модифицированной гравитации. И в целом, я думаю, у меня это получилось». Он лучезарно улыбался, в то время как люди вокруг нас смотрели в пол. «Какого черта вы над этим работаете?» — спросил он, не ожидая ответа.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*