KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Майкл Файер, "Абсолютный минимум. Как квантовая теория объясняет наш мир" бесплатно, без регистрации.
Перейти на страницу:

Рис. 14.13. Два конформера н-бутана. Гош-форма получается из транс-формы вращением на 120° вокруг средней C−C-связи


Вращение вокруг одиночной C−C-связи, переводящее молекулу между транс- и гош-конформациями, в жидкости при комнатной температуре может происходить очень быстро. Согласно теории, подтверждённой недавними экспериментами с ультрабыстрым инфракрасным лазером, гош-транс-переходы занимают всего 50 пс (1 пикосекунда = 10−12 сек), или 50 триллионных долей секунды. Поэтому в жидкости при комнатной температуре эти две формы бутана настолько быстро сменяют друг друга, что их невозможно изолировать в качестве отдельных молекул.

Двойные и тройные углерод-углеродные связи

Если вокруг одиночной C−C-связи совершить поворот очень легко, то для двойной или тройной углерод-углеродной связи это совсем не так. В главе 13 говорилось, что молекула O2 имеет двойную связь, а молекула N2 — тройную. Углерод-углеродные связи могут быть одиночными, двойными или тройными. Вращение вокруг двойной или тройной C−C-связи практически невозможно. Поэтому двойные связи могут фиксировать различные конформации молекул, имеющих одинаковые структурные изомеры. Как будет показано в главе 16, именно отсюда возникает термин «транс-жиры». Однако прежде, чем мы доберёмся до обсуждения таких больших молекул, как транс-жиры, нам надо поговорить о двойных и тройных C−C-связях.

В обсуждавшихся до сих пор соединениях углерод использует четыре sp3-гибридизированные атомные орбитали для создания четырёх одиночных σ-связей с другими атомами. В таких соединениях каждый атом углерода имеет тетраэдрическую конфигурацию четырёх связей. На рис. 14.3 изображена молекула формальдегида. Формальдегид содержит атом углерода с двойной связью. Чтобы показать, каким образом углерод создаёт одиночные, двойные и тройные связи, мы рассмотрим химические связи в этане, этилене и ацетилене. Эти три вещества имеют химические формулы H3C−CH3, H2C=CH2 и HC≡CH соответственно. Этан имеет одиночную связь, этилен — двойную, а ацетилен — тройную. На рис. 14.14 показано строение этих трёх молекул. В этане каждый атом углерода образует четыре связи в тетраэдрической конфигурации. В этилене каждый атом углерода образует три связи в форме треугольника, а в ацетилене атомы углерода образуют две связи, вытянутые в линию.

Хотя в каждой из трёх молекул два атома углерода связаны друг с другом, порядок их связи вносит большие различия. В табл. 14.1 приводятся значения длины и энергии C−C-связей для этих трёх молекул в зависимости от порядка связи. С увеличением порядка длина связи значительно сокращается, а энергия почти утраивается при переходе от одиночной связи к тройной.

Рис. 14.14. Этан: одиночная связь, тетраэдрическая конфигурация связей углерода. Этилен: двойная связь, треугольная конфигурация связей углерода. Ацетилен: тройная связь, линейная конфигурация связей углерода


Таблица 14.1. Одиночные, двойные и тройные C−C-связи

Порядок связи, Длина связи, Энергия связи ( Дж )

Этан, Одиночная (1), 1,54Å, 5,8∙10−19

Этилен, Двойная (2), 1,35Å, 8,7∙10−19

Ацетилен, Тройная (3), 1,21Å, 16∙10−19

Двойная углерод-углеродная связь — этилен

Для начала рассмотрим связь в молекуле этилена. Из рис. 14.15 видно, что углеродные центры здесь имеют треугольную форму. Как уже говорилось, для получения треугольной формы связей атом углерода будет использовать три sp2-гибридизированные атомные орбитали для образования МО (см. рис. 14.7). Углерод имеет четыре валентные орбитали, служащие для образования химических связей: 2s, 2px, 2py и 2pz. В верхней части указанного рисунка молекула этилена располагается в плоскости xy. Таким образом, атомы углерода и водорода лежат в плоскости страницы, которая и есть xy. Чтобы образовать треугольную конфигурацию гибридных sp2-орбиталей, служащих для формирования трёх связей, оба атома углерода используют 2s-, 2px- и 2py-орбитали. С тремя гибридными sp2-орбиталями каждый атом углерода будет создавать три σ-связи: одну — с другим атомом углерода и две — с атомами водорода. Эти σ-связи показаны в верхней части рис. 14.15.

Когда углерод образует три гибридные sp2-орбитали из 2s-, 2px- и 2py-орбиталей, у него остаётся 2pz-орбиталь, которая не принимает участия в σ-связывании. В верхней части рис. 14.15 2pz-орбиталь направлена поперёк страницы, выступая над ней и позади неё. Каждый атом углерода имеет один неспаренный электрон на 2pz-орбитали. В нижней части рисунка молекула этилена изображена повёрнутой. Сигма-связь показана линией, соединяющей атомы. Положительные лепестки 2pz-орбиталей перекрываются конструктивно, и то же самое происходит с отрицательными лепестками. Две 2pz-орбитали объединяются и образуют π-связывающую молекулярную орбиталь (см. рис. 13.3). Это π-связь, поскольку у неё нет электронной плотности на линии, соединяющей центры атомов углерода. Совокупный результат состоит в том, что два атома углерода имеют двойную связь, состоящую из σ-связи, образованной sp2-орбиталями каждого атома, и π-связью, образованной 2pz-орбиталями тех же атомов.

Вращение вокруг двойной углерод-углеродной связи невозможно. Для него потребовалось бы, чтобы перекрытие двух 2pz-орбиталей становилось всё хуже по мере увеличения угла поворота. При угле, равном 90°, две 2p-орбитали были бы направлены перпендикулярно друг другу и не давали бы никакого перекрытия. Такой поворот разрушил бы π-связь, на что потребовалось бы значительное количество энергии.

Рис. 14.15.Орбитали, образующие двойную связь в этилене. Вверху: каждый атом углерода использует три гибридные sp2-орбитали для образования трёх σ-связей в треугольной конфигурации. Страница соответствует плоскости xy, ось z направлена перпендикулярно этой плоскости. Внизу: каждый атом углерода имеет 2pz-орбитали, которые не используются в sp2-гибридизации. 2pz-орбитали объединяются и порождают π-связывающую молекулярную орбиталь, которая даёт вторую связь между атомами углерода


Как уже говорилось, измерения и теория позволили определить, что молекула бутана в жидкой фазе поворачивается вокруг одиночной C−C-связи примерно за 50 пс. Для этана это время составляет около 12 пс. Бутан вращается вокруг одиночной C−C-связи медленнее этана, поскольку содержит две дополнительные метильные группы (CH3) — по одной с каждой стороны от двух центральных атомов углерода. Если поместить этилен в такую же жидкую среду при комнатной температуре, то, по грубым оценкам, потребуется около ста миллиардов лет для того, чтобы совершить поворот вокруг двойной связи, поскольку на разрушение π-связи требуется огромное количество энергии. Таким образом, в любом практическом смысле двойная связь (как и тройная) препятствует вращательной изомеризации между конформерами, которые различаются конфигурацией относительно двойной связи.

Тройная углерод-углеродная связь — ацетилен

Ацетилен образует тройную связь между атомами углерода, во многом аналогичную двойной связи в этилене. Каждый атом углерода имеет для образования химических связей четыре атомные орбитали: 2s, 2px, 2py и 2pz. Молекула ацетилена линейная (см. рис. 14.14). Примем линию, вдоль которой выстроена молекула, за ось x. Тогда каждый атом углерода образует две гибридные sp-орбитали из своих 2s- и 2px-орбиталей. Эти две гибридные sp-орбитали атома углерода служат для образования двух σ-связей: одной — с другим атомом углерода и одной — с атомом водорода. В результате остаются неиспользованными две 2p-орбитали у каждого атома углерода — 2py и 2pz. 2pz-орбитали атомов углерода образуют одну π-связывающую МО, a 2py-орбитали — другую. В результате два атома углерода оказываются соединены тройной связью: одной σ-связью и двумя π-связями.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*