KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Владимир Секерин - Теория относительности — мистификация ХХ века

Владимир Секерин - Теория относительности — мистификация ХХ века

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Владимир Секерин - Теория относительности — мистификация ХХ века". Жанр: Физика издательство -, год -.
Перейти на страницу:

4.3. Звездная аберрация

В 1727 г. астроном Д. Бредли открыл явление звездной аберрации, которое заключается в том, что все звезды в течение года описывают на небесной сфере эллипсы с большой полуосью, наблюдаемой с Земли под углом α = 20,5». Аберрация обусловлена движением Земли по орбите вокруг Солнца со скоростью v = 29,8 км/с (рис. 5).



Рис. 5


Чтобы с движущейся Земли наблюдать звезду, необходимо наклонить трубу телескопа вперед по движению, так как за время, пока свет проходит трубу, окуляр вместе с Землей передвинется вперед. (Это точная аналогия движения, например, капли дождя в движущемся вагоне, попадающей через отверстие в крыше, если пренебречь сопротивлением воздуха). Очевидно, что v / c = tg α, при малом α tg α = α. Измерив угол α = 20,3» и используя правило расчета сложения скорости света со скоростью источника c = v / tg α, Бредли довольно точно вычислил скорость света [3, с. 262].

Скорость света относительно звезды — излучателя, равна с, а в системе Земли — приемника, движущегося со скоростью v перпендикулярно направлению движения света, равна с1 и находится по формуле



Угол α называется постоянной аберрации и обозначается буквой k. Указанная величина звездной аберрации с учетом постулата c = const считается величиной постоянной. В 1964 г. постоянная аберрации принята Международным Астрономическим Союзом k = 20,496″. До этого времени «по международному соглашению k = 20,47″». Если принять во внимание что средняя скорость Земли по орбите v = 29,765 км/с, а справочная величина скорости света с = 299792,5 км/с, то постоянная аберрации должна иметь величину k = (v/c)·206265″ = 20,479″.

На самом деле величина аберрации для различных звезд разная.

Известно, что некоторые звезды во Вселенной движутся со значительными скоростями относительно Солнечной системы. Свет от звезд, которые приближаются к нам или удаляются от нас со скоростью порядка 300 км/с, изменяет свою скорость на Земле на такую же величину. Величина аберрации этих звезд тоже изменяется до минус или плюс 0,02″, что значительно превышает современную разрешающую способность приборов в определении положения звезд (0,001″).

Разнобой в измерениях величины аберрации связан не только с неравномерностью движения Земли по орбите и техническими сложностями, но и с ошибочным представлением о скорости света.

4.4. Поперечный эффект Рёмера

Одним из следствий теории относительности, которое, якобы, не может быть объяснено классической физикой, является поперечный эффект Рёмера (Доплера). Эффект состоит в том, что частота света — ν1, регистрируемая в поперечном направлении к направлению движения источника, уменьшается и равна



где ν — частота излучаемого света, β = v/c; v — скорость движения источника, с — скорость света относительно источника.

На рис. 6 изображена схема опыта, проведенного в 1938 г Г. Айвсом и Д. Стиллуэлом. Н — поток каналовых лучей (возбужденных атомов водорода) движущихся со скоростью v ~ 108 см/сек вдоль экрана, Э — экран, О — оптическая ось спектрографа, Сп — спектрограф. В данном эксперименте длина волны, зарегистрированная спектрографом, уменьшилась на величину δλ = 0,0468 Å, весьма близкую к предсказанной теоретически [6].


Рис. 6


Внимательное рассмотрение проведенного эксперимента позволяет дать иное, чисто классическое, объяснение измеренным характеристикам света.

На основании опытных данных и астрономических наблюдений выше (раздел 4) показано, что движение света подчиняется классическому закону сложения скоростей.


Приведено описание понятия света, корпускулярные и волновые свойства которого в современном понимании определяют свет как поток упорядоченной структуры фотонов, каждый из которых содержит электрическое и магнитное поля. Характерный размер структуры потока λ — звено. Поток, состоящий из звеньев, при движении ведет себя в некоторых случаях подобно волне и может быть описан соответствующими уравнениями.


Рис. 7


В опыте Айвса, рис. 7, возбужденные атомы водорода, пролетая мимо отверстия в экране, излучают фотоны во всевозможных направлениях, в том числе и в перпендикулярном своему движению. Но эти фотоны из-за аберрации света в спектрограф попасть не могут. По правилу векторного сложения скоростей они отклоняются от оптической оси прибора на угол α из условия tg α = v/c.

По оптической же оси спектрографа распространяются только те фотоны, которые вылетают из потока возбужденных атомов водорода под углом минус φ к перпендикуляру направления своего движения, где φ=arcsin (v/c), рис. 8.


Рис. 8


Скорость данных фотонов относительно спектрографа



По формулам (15) и (16) регистрируемая в этом случае частота света



Раскрывая c2 через c и v, находим




При расположении спектрографа под любым углом к направлению движения атомов водорода указанный эффект относится к перпендикулярной составляющей скорости света относительно оптической оси спектрографа.

4.5. Двойные звезды

Наиболее последовательная теория электродинамики, в которой отвергается постулат постоянства скорости света, была опубликована австрийским ученым В. Ритцем в 1908 г [7]. Впоследствии эту теорию стали именовать «баллистической», потому что при ее изложении испускание света сравнивалось с выпускаемыми движущимся орудием снарядами.

В 1913 г де-Ситтером [8] были приведены рассуждения о наблюдениях двойных звезд, которые якобы опровергают классический закон сложения скорости света и которые до сих пор в учебниках и справочниках по физике являются самым весомым доказательством истинности с = const.

Содержание рассуждений заключено в следующем: «…представим себе звезду на расстоянии L от наблюдателя, одна из компонент которой S имеет период обращения T и линейную скорость движения v (рис. 9).

Рис. 9


Если баллистическая гипотеза справедлива, то свет от компоненты S в положении I дойдет до наблюдателя к моменту 



 а в положении II — к моменту



где



полупериод обращения.


Таким образом, наблюдаемое движение звезды может заметно отступать от законов Кеплера. В частности, при очень большом L возможно, что даже при v << c получится t2 < t1, т. е. видимое движение приобретает весьма прихотливый характер. Рассмотрение достаточного количества звезд показывает, что такое следствие баллистической гипотезы противоречит наблюдению и что, следовательно, гипотеза Ритца должна быть отставлена» [9, с. 452].

Однако, продолжив начатые выше рассуждения, приходим к выводу, что существующие в движении визуально двойных звезд отступления от законов Кеплера в результате сложения скоростей настолько малы, что не могут быть зафиксированы имеющимися на сегодня приборами. Чтобы показать это, найдем угол α между изображениями звезды S в точках I и II при условии t1 = t2, или

откуда следует


От точки I до точки II, расстояние между которыми равно диаметру орбиты Д, звезда перемещается за время Т/2, что позволяет записать:



При условии Д <<< L угол α равен tg α, то есть,



Подставляя в (31) значения L и Д из (29) и (30) и учитывая, что v << с, находим



Известно, что скорость визуально двойных звезд по орбитам гораздо меньше скорости в 350 км/с, которая необходима для того, чтобы угол α составил 2·10-6 рад — границу разрешающей способности современных телескопов. Поэтому тригонометрические измерения не позволяют опровергнуть гипотезу И. Ньютона и В. Ритца.

4.6. Измерение расстояния до двойных звезд

Однако закон сложения скорости света со скоростью источника, доказанный наблюдениями О. Рёмера, в двойных звездах проявляется изменением блеска звезды S. Переменная скорость движения звезды относительно Земли приводит к переменной скорости света от нее с одновременным, согласно эффекту Рёмера, изменением частоты излучения и изменению наблюдаемой интенсивности излучения звезды.

Для рассмотрения характера этого явления построим в координатах L и t траектории света, идущего от звезды S, которая движется по круговой орбите (рис. 10). Скорость света звезды относительно Земли c1 = c + v sin ωt. В определенные моменты периода звезды на некотором расстоянии от нее, свет более «быстрый» для наблюдателя догоняет свет более «медленный» и фиксируется наблюдателем одновременно.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*