KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории" бесплатно, без регистрации.
Перейти на страницу:

Считали ли Уленбек и Гоудсмит, что электрон действительно вращается вокруг своей оси? И да, и нет. На самом деле их работа показала, что существует квантово-механическое понятие спина, которое в определённой степени напоминает вращение объекта вокруг собственной оси, но которое, по сути, представляет квантово-механическое явление. Это одно из тех свойств микромира, которое не имеет аналога в классической физике, а является экспериментально подтверждаемой квантовой особенностью. Представьте себе, например, вращающегося фигуриста. Когда он прижимает руки к телу, его вращение ускоряется, когда разводит руки в стороны — вращение замедляется. Однако рано или поздно, в зависимости от того, с какой энергией он начал своё вращение, его движение замедлится, и он остановится. Не так обстоят дела со спином, открытым Уленбеком и Гоудсмитом. Согласно их работе и данным последующих исследований, каждый электрон во Вселенной всегда вращается с постоянной и никогда не меняющейся скоростью. Спин электрона не является промежуточным состоянием движения, которое мы наблюдаем в случае более привычных объектов, по тем или иным причинам пришедших во вращение. Напротив, спин электрона является внутренним, присущим электрону свойством, похожим в этом отношении на массу или электрический заряд. Если бы электрон не вращался, он не был бы электроном.

Хотя первые работы были посвящены электронам, впоследствии физики показали, что понятие спина применимо ко всем частицам вещества, образующим три семейства из табл. 1.1. Это утверждение истинно вплоть до мельчайших деталей: все частицы вещества (а также их античастицы) имеют спин, равный спину электрона. На своём специальном языке физики говорят, что все частицы вещества имеют «спин 1/2», где значение 1/2 представляет собой, грубо говоря, квантово-механическую меру скорости вращения частиц.{51} Более того, физики показали, что частицы, передающие негравитационные взаимодействия, — фотоны, слабые калибровочные бозоны и глюоны — также обладают спином, который оказался в два раза больше, чем спин частиц вещества. Все эти частицы имеют «спин 1».

А как насчёт гравитации? Ещё до появления теории струн физики смогли установить, какой спин должен иметь гипотетический гравитон, чтобы он мог переносить гравитационное взаимодействие. Полученный ими ответ гласил: удвоенный спин фотонов, слабых калибровочных бозонов и глюонов — т. е. «спин 2».

В теории струн спин, так же как масса и константы других взаимодействий, связан с модой колебания струны. Как и в случае с точечными частицами, было бы не совсем правильно думать, что спин, который несёт струна, возникает из-за того, что она действительно вращается в пространстве, однако эта картина даёт хороший образ для представления. Кстати, теперь можно уточнить одно важное обстоятельство, с которым мы столкнулись ранее. В 1974 г. Шерк и Шварц провозгласили, что теория струн должна рассматриваться как квантовая теория, включающая гравитационное взаимодействие. Такой вывод стал возможен потому, что они обнаружили: в спектре колебаний струн обязательно должна присутствовать мода, которая соответствует безмассовой частице со спином 2. Но именно эти характеристики являются отличительными признаками гравитона. А где гравитон, там и гравитация.

Получив основные представления о спине, вернёмся к той роли, которую он играет в качестве упомянутой в предыдущем разделе лазейки в обход теоремы Коулмена–Мандулы, касающейся возможных видов симметрии в природе.

Суперсимметрия и суперпартнёры

Как мы уже подчёркивали, хотя понятие спина имеет поверхностное сходство с образом вращающегося волчка, оно имеет и значительные отличия, связанные с его квантовой природой. Открытие спина в 1925 г. показало, что имеется ещё один вид вращательного движения, который попросту не существует в чисто классической Вселенной.

Это позволяет задать следующий вопрос: если обычное вращательное движение приводит к принципу симметрии, носящему название инвариантности относительно вращений («физика рассматривает все возможные направления в пространстве как равноправные»), не ведёт ли это более специфическое вращательное движение ещё к одному принципу симметрии законов природы? Примерно к 1971 г. физики показали, что ответ на этот вопрос положителен. Хотя полное доказательство достаточно сложно, основная идея состоит в том, что если рассматривать спин с математической точки зрения, возможна ровно одна дополнительная симметрия законов природы. Она получила название суперсимметрии.{52}

Суперсимметрии не может быть поставлено в соответствие простое и интуитивно понятное изменение точки зрения наблюдателя: сдвиги во времени, пространственном положении, угловой ориентации и скорости движения уже исчерпали эти возможности. Однако поскольку спин представляет собой «подобие вращательного движения, имеющее квантово-механическую природу», суперсимметрия связана с изменением точки зрения наблюдателя в «квантово-механическом расширении пространства и времени». Кавычки здесь очень важны, поскольку последняя фраза даёт только общее представление о месте суперсимметрии в общей системе принципов симметрии природы.{53} Однако понимание принципа суперсимметрии является довольно сложной задачей, и мы сконцентрируем внимание на его основных следствиях, на том, согласуются ли законы природы с этим принципом. Этот вопрос гораздо легче поддаётся объяснению.

В начале 1970-х гг. физики пришли к выводу, что если Вселенная является суперсимметричной, частицы природы должны входить в набор наблюдаемых частиц парами, при этом спин частиц, образующих пару, должен отличаться на 1/2. Такие пары частиц — независимо от того, считаются ли они точечными (как в стандартной модели) или крошечными колеблющимися петлями — называются суперпартнёрами. Поскольку частицы вещества имеют спин 1/2, а некоторые из частиц, передающих взаимодействие — спин 1, суперсимметрия приводит к выводу о наличии пар, о партнёрстве частиц вещества и частиц, передающих взаимодействие. Сам по себе этот вывод выглядит весьма привлекательно с точки зрения объединения частиц в одну теорию. Проблема кроется в деталях.

К середине 1970-х гг., когда физики искали способ, который позволил бы включить суперсимметрию в стандартную модель, они обнаружили, что ни одна из известных частиц, перечисленных в табл. 1.1 и 1.2, не может быть суперпартнёром для другой. Как показал тщательный теоретический анализ, если Вселенная включает принцип суперсимметрии, то каждой известной частице должна соответствовать ещё не открытая частица-суперпартнёр, спин которой на половину меньше, чем спин её известного партнёра. Так, партнёр электрона должен иметь спин 0; эта гипотетическая частица получила название сэлектрона (сокращение от термина суперсимметричный электрон). То же самое справедливо и для других частиц вещества. Например, имеющие спин 0 гипотетические суперпартнёры нейтрино и кварков получили название снейтрино и скварков. Аналогично частицы, передающие взаимодействия, должны иметь суперпартнёров со спином 1/2. Для фотонов это будут фотино, для глюонов — глюино, для W-бозонов и Z-бозонов — ви́но и зи́но.

Таким образом, при более внимательном изучении суперсимметрия оказалась чрезвычайно неэкономичным понятием: она требовала большого количества дополнительных частиц, дублировавших список фундаментальных компонентов. Поскольку ни одна из частиц-суперпартнёров не была обнаружена, вы можете довольствоваться приведённым в главе 1 замечанием Раби по поводу открытия мюона, немного усилив его звучание: «Никто не заказывал суперсимметрию», и, без долгих рассуждений, отказаться от этого принципа симметрии. Существуют, однако, три причины, по которым многие физики твёрдо убеждены, что такой скоропалительный отказ от суперсимметрии был бы преждевременным. Обсудим эти причины.

Доводы в пользу суперсимметрии — до появления теории струн

Во-первых, с чисто эстетических позиций, физики не могли примириться с тем, что природа реализовала почти все, но не все математически возможные виды симметрии. Конечно, нельзя исключать возможность того, что симметрия реализуется не полностью, но это было бы так обидно. Это было бы похоже на то, как если бы Бах, написав многоголосные переплетающиеся партии, встроенные в гениальную картину музыкальной симметрии, забыл про финал, расставляющий всё по своим местам.

Во-вторых, даже в стандартной модели, в теории, которая игнорирует гравитацию, многочисленные технические трудности, связанные с квантовыми эффектами, безболезненно разрешаются при использовании суперсимметрии. Основная проблема состоит в том, что каждый отдельный вид частиц вносит свой собственный вклад в микроскопический квантовый хаос. Исследуя глубины этого хаоса, физики обнаружили, что некоторые процессы, связанные со взаимодействием частиц, можно описать непротиворечивым образом только при очень точной настройке параметров стандартной модели, с точностью, превышающей 10−15, для нейтрализации наиболее разрушительных квантовых эффектов. Для сравнения: такая точность необходима для того, чтобы пуля, выпущенная из воображаемого сверхмощного ружья, попала в цель на Луне с отклонением, не превышающим размеры амёбы. Хотя стандартная модель допускает регулировку параметров с такой точностью, многие физики испытывают сильное недоверие к теории, которая устроена настолько деликатно, что разваливается, если параметр, от которого она зависит, изменяется на единицу в пятнадцатом разряде после запятой.{54}

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*