KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Ткань космоса: Пространство, время и текстура реальности

Брайан Грин - Ткань космоса: Пространство, время и текстура реальности

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Ткань космоса: Пространство, время и текстура реальности" бесплатно, без регистрации.
Перейти на страницу:

Опять-таки, точно как с теннисным мячом, если мы сумеем обратить все эти скорости, то, что мы увидим, будет похоже на плёнку, прокручиваемую в обратном направлении. Но, в отличие от теннисного мяча, обращение движения разбивающегося яйца будет чрезвычайно впечатляющим. Волна колеблющихся молекул воздуха и мельчайшие сотрясения пола соберутся в месте падения яйца со всех частей кухни, заставив переместиться кусочки скорлупы и капли желтка к месту удара. Каждый ингредиент будет двигаться в точности с той же скоростью, которую он имел в исходном процессе разбивания яйца, но каждый будет теперь двигаться в противоположном направлении. Капли желтка будут лететь назад и собираться в шарик, как и зазубренные края осколков скорлупы будут точно встраиваться друг в друга для соединения в гладкий яйцевидный контейнер. Колебания пола и воздуха будут точно состыкованы с движениями бесчисленных соединяющихся капель желтка и кусочков скорлупы, чтобы дать заново сформированное яйцо, которое одним толчком подпрыгнет с пола в виде одного целого, взлетит на кухонный стол, мягко приземлится на его край с достаточным вращательным движением, чтобы откатиться на несколько дюймов и элегантно вернуться к начальному состоянию покоя. Это всё будет происходить, если мы решим задачу тотального и точного обращения скоростей всего, что было задействовано в процессе{104}.

Так что, является ли событие простым, вроде полёта теннисного мяча по дуге, или чем-то более сложным, вроде разбивания яйца, законы физики показывают — то, что происходит в одном временно́м направлении, может, по крайней мере в принципе, происходить также и в обратном.

Принцип и практика

Истории о теннисном мяче и яйце не просто иллюстрируют симметрию по отношению к обращению времени в законах природы. Они также наводят на мысль, почему в реальном мире многие вещи происходят одним способом, но никогда не происходят в обратном направлении. Нетрудно было заставить теннисный мяч повторить свой путь назад. Мы просто схватили его и направили с той же самой скоростью, но в обратном направлении. Вот и всё. Но заставить все хаотические остатки яйца воспроизвести их пути назад будет куда сложнее. Мы должны схватить каждый кусочек разбитого яйца и одновременно направить его с той же скоростью, но в противоположном направлении. Ясно, что это находится за пределами того, что мы (или вся королевская конница и вся королевская рать) реально можем сделать.

Нашли ли мы ответ, который искали? Связана ли причина того, почему яйца разбиваются, но не собираются обратно, хотя оба действия допускаются законами физики, с тем, что осуществимо, а что не осуществимо на практике? Не состоит ли ответ на вопрос просто в том, что яйцо легко разбить — катнуть его по столу, — но чрезвычайно трудно заставить его собраться обратно?

Но если бы это был ответ, поверьте мне, я не стал бы делать из этого большой проблемы. Противопоставление простоты и сложности является существенной частью ответа, но вся история намного более тонка и удивительна. В своё время мы вернёмся к ней, но сначала необходимо придать всему обсуждению в этой главе бо́льшую строгость. Это приводит нас к концепции энтропии.

Энтропия

На могильном камне Центрального кладбища в Вене, рядом с могилами Бетховена, Брамса, Шуберта и Штрауса, выгравировано простое уравнение S = k logW которое выражает математическую формулировку важного понятия, известного как энтропия. На могильном камне начертано имя Людвига Больцмана, одного из наиболее проницательных физиков, работавших на рубеже XIX и XX столетий. В 1906 г., с подорванным здоровьем и страдая от депрессии, Больцман совершил самоубийство, находясь на отдыхе со своей женой и дочерью в Италии. По иронии судьбы, всего несколькими месяцами позже эксперименты, начатые для подтверждения идей Больцмана, пылко отстаивая которые, он растратил свою жизнь, оказались успешными.

Понятие энтропии впервые было введено во время промышленной революции учёными, исследовавшими работу печей и паровых двигателей. Эти исследования послужили началом новой науки — термодинамики. После многих лет исследований основополагающие идеи термодинамики были предельно уточнены, получив окончательную формулировку в подходе Больцмана. Его интерпретация энтропии, лаконично выраженная в уравнении на его надгробии, использует статистический подход для установления связи между огромным числом отдельных компонентов, составляющих физическую систему, и общими свойствами, которые имеет эта система{105}.

Чтобы почувствовать эти идеи, представим себе непереплетённое издание романа «Война и мир», на отдельных 693 листах. Подбросим их высоко в воздух, а затем соберём аккуратно в стопку{106}. Когда вы проверите собранную пачку, то с огромной вероятностью обнаружите, что страницы расположены не по порядку. Причина очевидна. Имеется множество вариантов, в которых порядок страниц будет перепутан, но существует лишь один вариант, при котором порядок правильный. Конечно, по порядку — это значит, что страницы должны быть расположены в точности 1, 2; 3, 4; 5, 6 и т. д., вплоть до 1385, 1386. Любое другое расположение будет не по порядку. Простое, но существенное наблюдение заключается в том, что чем большим числом равноправных способов что-то может произойти, тем более вероятно, что оно произойдёт. А если нечто может произойти огромным числом способов, вроде как для страниц приземлиться в неправильном порядке, то в огромной степени более вероятно, что именно так и произойдёт. Интуитивно мы все это знаем. Если вы покупаете один лотерейный билет, есть только один способ выиграть. Если вы купите миллион билетов, каждый со своим номером, то будет миллион способов выиграть, так что ваши шансы разбогатеть будут в миллион раз выше.

Энтропия — это понятие, которое придаёт точность этой идее путём подсчёта количества способов, согласующихся с законами физики, которыми может быть реализована данная физическая ситуация. Высокая энтропия означает, что имеется много способов; низкая энтропия означает, что имеется мало способов. Если страницы книги расположены в правильном числовом порядке — это низкоэнтропийная конфигурация, поскольку имеется одно и только одно расположение, удовлетворяющее этому критерию. Если страницы находятся не в правильном порядке — это высокоэнтропийная ситуация, поскольку небольшой расчёт показывает, что имеется

1245521984537783433660029353704988291633611012463890451368876912646868955918529845043773940692947439507941893387518765276567140592866271513670747391295713823538000161081264653018234205620571473206172029382902912502131702278211913473582655881541071360143119322157534159733855428467298691398151599251190858672609934810561430341343830563771367151105704786941333912934192440961051428879847790853609508954014012593285063290603410951314946638983905267676104278041667301549455228188610250246338662603601508886647010142970854584815141598392546876231295293347829518681237077459652243214888735167928448340300078717063668462384353624245167362286109198539391815030760468904664912978940625033265186858373227136370247390401891094064988139838026545111487686489581649140342644411087191184416428090275713773809067258708430215795015899162320458130129508343865379081918237777385214375363122531641598589268105976528144801387748697026525462643937189392730592179674716916697815519856976926924946738364227822733457767180733162404336369527711836741042844934722347792234027225630721193853912472880929072034271692377936207650190457109788774453544358680331916095924987744319498699770033324946307324375535322906744817657953956218403295168144271042227608124289048716428664872403070364864934832509996672897344642531034930062662201460431205110109328239624925119689782833061921508282708143936599873268490479941668396577478902124562796195600187060805768778947870098610692265944872693410000872699876339900302559168582063973485103562967646116002251592001137227412733180748295472481928076532664070230832754286312646671501355905966429773337131834654748547607012423301287213532123732873272187482526403991104970017214756470049929226458643522650111999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

— приблизительно 101878 — различных неупорядоченных расстановок страниц{107}. Если вы подбросили страницы в воздух, а затем собрали их в аккуратную стопку, практически всегда они будут сложены беспорядочно, поскольку такие конфигурации имеют более высокую энтропию — имеется намного больше способов получить неупорядоченный результат, чем исключительное расположение, в котором страницы находятся в правильном числовом порядке.

В принципе, мы могли бы воспользоваться законами классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Тогда, снова в принципе, мы могли бы точно предсказать итоговое расположение страниц{108} и поэтому (в отличие от квантовой механики, которую мы игнорируем до следующей главы) могло бы показаться, что нет необходимости полагаться на вероятностные понятия, вроде того, какой результат является более или менее вероятным по сравнению с другими. Но статистические понятия являются как мощными, так и полезными. Если бы «Война и мир» была памфлетом из пары страниц, мы могли бы успешно завершить необходимые вычисления, но это будет невозможно сделать для настоящей книги «Война и мир»{109}. Отслеживание точного движения 693 гибких листов бумаги, когда они подхватываются воздушными потоками, соприкасаются, скользят и толкают друг друга, будет монументальной задачей, далеко лежащей за пределами возможностей даже самых мощных суперкомпьютеров.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*