Леонид Пономарев - По ту сторону кванта
Чтобы ответить на эти вопросы, нам придется ввести новое понятие — вероятность. Оно настолько фундаментально, что без него современной квантовой механики не существует вообще. Теперь мы им и займемся.
ВОКРУГ КВАНТА
ЖИЗНЬ…
Роджер Иозеф Боскович (1711–1787) сейчас известен только узкому кругу специалистов, но в начале прошлого века он был знаменит, а его теория атома оказала влияние даже на мировоззрение таких людей, как Фарадей и Максвелл.
Боскович родился и провел детские годы в Югославии, в Дубровнике (в то время — Рагуса). Он был восьмым ребенком из девяти и самым младшим из шести сыновей в семье крупных торговцев. То было время, когда любая деятельность людей получала смысл и признание лишь в том случае, если она была освящена церковью или связана с нею. Уже с 8 лет Боскович учился в местном иезуитском колледже, а в 14 лет отправился на родину матери, в Рим, и после двух лет искуса был принят в Collegium Romanum. Там он отличился в математике, физике и астрономии и в 1736 году опубликовал первую научную работу о солнечном экваторе и периоде вращения Солнца. В 29 лет он стал преподавателем, а в 33 года — священником и членом общества Иисуса. В продолжение 14 лет он преподает физику и математику, изучает аберрацию света и форму Земли, создает карту Ватикана.
Боскович был не только ученый, но и поэт. (В 1779 году он посвятил поэму Людовику XVI, в которой предсказывал ему царствование без солнечных затмений.) Яркие качества его богатой натуры в сочетании с блестящим интеллектом открыли ему доступ в высшие духовные, академические и дипломатические круги Европы.
В 1757 году он едет в Вену в составе посольства и там за одиннадцать месяцев пишет книгу «Теория натуральной философии», которую он обдумывал в течение двенадцати лет. После возвращения из Вены он отправился в четырехлетнее путешествие в Париж, Лондон, Константинополь, затем читал лекции, работал в обсерватории в Милане, снискал ненависть коллег независимостью взглядов и в 1772 году оказался в Венеции без средств к жизни. Друзья выхлопотали ему место в Париже, где он прожил десять лет и лишь в 1783 году возвратился в Италию издавать свои труды. В конце 1786 года он почувствовал признаки умственного расстройства, которое перешло в патологическую меланхолию. После попытки к самоубийству он сошел с ума и 13 февраля 1787 года избавился наконец от всех сложностей своей жизни.
…И АТОМ БОСКОВИЧА
Из тех немногих, кто в XVIII веке верил в атомы, Боскович — единственный, кто не верил в атомы — твердые шарики. Поэтому его воззрения ближе к нам, чем все атомные теории XIX века.
Свое недоверие к несжимаемым атомам-шарикам Боскович обосновывал тем, что с помощью таких атомов нельзя объяснить кристаллическую структуру тел и их упругость, плавление твердых веществ, испарение жидкостей, а тем более химические реакции между веществами, построенными из таких круглых, твердых и непроницаемых шаров.
Боскович представлял себе атом, как центр сил, которые меняются в зависимости от расстояния до этого центра. Близко к центру силы отталкивающие, что соответствует отталкиванию атомов при тесном сближении или при их столкновении. При удалении от центра отталкивающая сила сначала уменьшается, затем обращается в нуль и, наконец, становится притягивающей — как раз в этот момент, говорил Боскович, образуются все жидкие и твердые тела. Но если мы еще удалимся от центра сил, то силы вновь станут отталкивающими — в этот момент жидкие тела испаряются. И совсем далеко от атома силы всегда притягивающие, как того и требует закон всемирного тяготения Ньютона.
Таким образом, каждый атом Босковича «простирается вплоть до границ солнечной системы», а поскольку центры сил нельзя ни уничтожить, ни создать, то его атомы вечны, так же как и атомы Демокрита.
Атом БосковичаАтом Босковича значительно ближе к современному атому, чем атом Демокрита. Например, как и современный атом, он не имеет определенных геометрических размеров. Зато с его помощью можно понять разнообразие форм кристаллов и всевозможные химические превращения, в которых эти атомы участвуют.
Взгляните на рисунок, взятый из книги Босковича. Он изображает закон изменения сил, как его представлял себе он сам. Конечно, атом Босковича — это умозрительная схема, которая не опирается ни на опыт, пи на математику, а лишь на здравый смысл и внимательные наблюдения над природой. Сам Боскович писал: «Существуют, однако, определенные вещи, связанные с законом сил, относительно которых все мы невежды. Они касаются находящихся между ними дуг и других вещей того же рода. Все это, однако, далеко превосходит человеческое разумение, и только Он один, кто создал вселенную, имел перед своими глазами целое».
На рисунке рядом нарисован закон изменения сил, действующих между двумя атомами водорода. Можно только удивляться, насколько он похож на картинку Босковича. Но этот закон вычислен из уравнений квантовой механики без всякого произвола и ссылок на божественное провидение. С помощью этого закона сил мы можем предсказать спектр молекулы водорода, вычислить заранее энергию, которую необходимо затратить, чтобы оторвать один атом водорода от другого, мы можем предвидеть, что произойдет, если смешать водород, например, с хлором, и что изменится, если облучать эту смесь ультрафиолетовыми лучами.
Квантовая механика позволяет вычислить закон изменения сил между двумя произвольными атомами. В принципе она в состоянии рассчитать форму кристаллов. Она даже может предсказать цвет химических соединений. Конечно, все это доступно только тем, кто владеет довольно сложной математикой атомной физики. Однако понять многие особенности строения и свойства веществ может каждый, кто хоть немного знаком с ее образами.
ГЛАВА ДЕСЯТАЯ
Представьте себе, что где-то в поезде между Новосибирском и Красноярском вы познакомились с хорошим человеком. Теперь вообразите, что год спустя вы случайно встречаете его в Москве у кинотеатра «Россия». Как бы вы ни были рады встрече, прежде всего вы удивитесь, потому что знаете по опыту, насколько такое событие маловероятно.
Глава десятаяМы постоянно употребляем слова «вероятно», «вероятнее всего», «по всей вероятности», «невероятно», не отдавая себе отчета, насколько строго определены понятия, им соответствующие. В науке такое положение недопустимо, поэтому там понятие «вероятность» имеет смысл лишь в, том случае, если мы можем ее вычислить.
Это не всегда возможно. Например, нельзя предсказать вероятность случайной встречи с вашим случайным знакомым в 6 часов вечера 23 октября 1975 года на Главпочтамте города Липецка, хотя заведомо ясно, что эта вероятность не равна нулю. Но поступки людей не случайны, и применять к ним теорию вероятностей нельзя. Поэтому во всех учебниках с завидным постоянством объясняют законы случая на примере бросания монеты.
ИГРА В «ОРЕЛ-РЕШКУ»
Прежде всего заметим: если событие имеет несколько исходов, то полная вероятность произойти хоть какому-то из них равна единице. Поэтому слова «событие произойдет с вероятностью единица» означают, что оно произойдет наверняка.
Отсюда ясно также, что вероятность какого-то одного исхода всегда меньше единицы. В примере с монетой случайное событие — бросание монеты — имеет только два исхода: она может упасть либо гербом вверх, либо гербом вниз. (Мы исключаем неправдоподобно редкие случаи, когда монета при падении останется стоять на ребре.) Если монета сделана без хитростей, то логично предположить, что оба исхода бросания равновероятны. Отсюда сразу же следует, что вероятность выпадания, скажем, герба равна 1/2.
Столь же легко вычислить вероятность выпадания, скажем, 3 очков при бросании игральной кости: очевидно, она равна 1/6.
Число аналогичных примеров каждый легко умножит сам, но все они очень похожи.
Во-первых, каждое последующее событие (бросание монеты) не зависит от предыдущего.
Во-вторых, они строго случайны, то есть мы не знаем (или не можем учесть) всех причин, которые приводят к тому или иному исходу события.
Последнее особенно важно. В самом деле, монета не атом, и ее движение подчиняется хорошо известным законам классической механики. Используя их, мы бы могли заранее предвидеть все детали движения монеты и предсказать, как она упадет: гербом вверх или вниз. Нам под силу даже нарисовать ее траекторию движения. Конечно, это очень трудно: нужно принять во внимание сопротивление воздуха, форму монеты, упругость пола, на который она упадет, и еще много других важных мелочей. И — самое главное — необходимо точно задать начальное положение и импульс монеты.