KnigaRead.com/

Леонид Пономарев - По ту сторону кванта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Леонид Пономарев, "По ту сторону кванта" бесплатно, без регистрации.
Перейти на страницу:

А что, если в печь вместо лома положить булыжник, как делалось раньше в русских банях? Будет ли его энергия излучения отличаться от излучения железного лома? В 1859 году Густав Роберт Кирхгоф доказал, что не будет, если температура печи в обоих случаях одинакова. Он доказал даже нечто большее, но чтобы понять это нечто, нужно прервать рассказ и более пристально посмотреть на поток излучения, который исходит от нагретого тела.

Так же, как и солнечный свет, этот поток неоднороден. Любое тепловое излучение, во-первых, состоит из лучей различной длины волны, и, во-вторых, их вклад в общий поток излучения различен. Если обе эти характеристики мы знаем, то можем утверждать, что нам известен спектральный состав излучения.

Чтобы подчеркнуть тот факт, что доля излучения с частотой ν в общем потоке излучения зависит от температуры Т, обычно пишут такую формулу: U=U (ν, Т).

Конечно, если мы будем менять температуру тела, то спектральный состав его теплового излучения также будет меняться. Количественные законы этого изменения установил в 1893 году Вильгельм Вин (1864–1928).

Но даже при одной и той же температуре различные тела излучают по-разному. В этом нетрудно убедиться, если нагревать в темноте одновременно, например, стальной и каменный шары. Вскоре выяснили, однако, что если вместо сплошных шаров нагревать полые, а излучение наблюдать через небольшое отверстие в их стенках, то спектральный состав этого излучения уже не зависит от вещества шара. Такой спектр назвали спектром абсолютно черного тела.

Происхождение этого несколько необычного названия легко понять. Представьте себе, что вы не нагреваете шар, а, наоборот, освещаете его снаружи. Вы всегда увидите перед собой черное отверстие независимо от материала шара. Потому что все лучи, попавшие внутрь полости, многократно там отражаются и почти не выходят наружу.

Лучи

Реально существующий пример такого абсолютно черного тела — обычная или, еще лучше, мартеновская печь. Кстати, если вы смотрели когда-либо внутрь мартеновской печи, то, вероятно, обратили внимание на интересное явление: из ее отверстия льется ровный свет, который не позволяет рассмотреть детали предметов, расположенных внутри печи. Наши знания об излучении позволяют нам теперь понять и этот факт.

Два равных по величине шара, каменный и стальной, на солнце очень просто различить — слишком неодинаково они блестят: стальной шар отражает гораздо больше лучей, чем каменный. Если теперь эти шары нагреть в темноте, то нетрудно проверить, что каменный шар излучает больше, чем стальной. (Кстати, это одна из причин, почему в банях выгоднее раскалять булыжники, а не стальные болванки.)

Если эти шары бросить в мартеновскую печь, туда, где они не только нагреваются и излучают сами, но также поглощают и отражают излучение других тел, то мы увидим (разумеется, если взглянем в печь раньше, чем шары расплавятся) два совершенно одинаковых шара. Почему? Да потому, что если каменный шар больше излучает «своих» лучей, то он больше и поглощает «чужих», а стальной меньше излучает «своих» лучей, но зато больше отражает «чужих». Поэтому общий поток лучей («своих» и «чужих») от обоих "шаров одинаков; и поэтому их нельзя отличить не только друг от друга, но даже и от стенок печи, в которой они лежат.

Именно этот строгий закон был установлен Кирхгофом в 1759 году: отношение излучательной способности тел к их поглощательной способности есть универсальная функция: U=U (ν, Т), независимая от природы тел. В спектральной функции U=U (ν, Т) (ее называют и так) заключена почти вся информация о свойствах теплового излучения. В частности, цвет нагретого тела определяют те волны, которых излучается больше всего.

Важность функции U = U (ν, Т) поняли сразу же во времена Кирхгофа, но в течение 40 лет не удавалось найти для нее формулу, которая бы правильно описывала все эксперименты по тепловому излучению. Однако эти попытки никогда не прекращались: по-видимому, поиски абсолютного всегда привлекательны для человеческого ума.

В нашем рассказе мы подошли к порогу переворота, который совершил в физике Макс Планк (1858–1947). Но прежде чем объяснить его суть, еще раз отметим одну особенность теплового излучения, о которой мы однажды упоминали: изменение цвета тел при нагревании.

Макс Планк

Пока температура тела невысока, оно излучает, но не светится, то есть оно испускает только тепловые и инфракрасные волны, невидимые для глаза. При повышении температуры тело начинает светиться: сначала красным цветом, затем оранжевым, желтым и т. д. Например, при 6 тысячах градусов Цельсия больше всего излучается желтых лучей. Кстати, по этому признаку установили, что именно такова температура поверхности Солнца.

Обратите внимание: в случае с солнечным ожогом излучение отдавало тем большую энергию, чем больше его частота. А в данном случае? Чем большую энергию мы затратили на нагревание тела, тем больше частота излучаемых волн. Значит, существует какая-то зависимость между частотой и энергией излучения.

КВАНТЫ

В конце прошлого века Макс Планк искал универсальную формулу для спектра абсолютно черного тела. Как он должен был при этом рассуждать? Тепловое излучение не только порождается движением атомов, но и само воздействует на них, так как несет с собой энергию. В результате такого взаимовлияния внутри абсолютно черного тела устанавливается тепловое равновесие: сколько тепла атомы получают извне, столько же энергии от них уносит излучение. Из кинетической теории материи он знал, что средняя энергия колебаний атомов Екал пропорциональна абсолютной температуре Т: Екол = kT, где k = 1,38 • 1016 эрг/град — множитель пропорциональности, который называется постоянной Больцмана.

Теперь вспомните: энергия излучения растет с его частотой. Знал это, конечно, и Планк. Но как растет? Он предположил простейшее: энергия излучения Еизл пропорциональна его частоте: Еизл = h ν, где h — другой множитель пропорциональности. (Мысль эта настолько проста, что ее нельзя доказывать и объяснять через более простые понятия. Однако гениальные мысли отмечает именно такая классическая простота.) Предположив это, Макс Планк угадал формулу для спектральной функции U = U (ν, Т). Да, угадал. Но не надо думать, что все было так уж просто, над своей формулой Планк бился два года.

19 октября 1900 года происходило очередное заседание Немецкого физического общества, на котором экспериментаторы Рубенс и Курлбаум докладывали о новых, более точных измерениях спектра абсолютно черного тела. После доклада состоялась дискуссия, в ходе которой экспериментаторы сетовали, что ни одна из теорий не может объяснить их результаты. Планк предложил им воспользоваться своей формулой. В ту же ночь Рубенс сравнил свои измерения с формулой Планка и убедился, что она правильно, до мельчайших подробностей описывает спектр абсолютно черного тела. Наутро он сообщил об этом своему коллеге и близкому другу Планку и поздравил его с успехом.

Однако Планк был теоретик и потому ценил не только окончательные результаты теорий, но и внутреннее их совершенство. К тому же он не знал еще, что открыл новый закон природы, и считал, что его можно вывести из ранее известных. Поэтому он стремился теоретически обосновать закон излучения, исходя из простых посылок кинетической теории материи и термодинамики. Последовало два месяца непрерывной работы и предельного напряжения сил. Ему это удалось. Но какой ценой!

В процессе вычислений он вынужден был предположить, что излучение испускается порциями (или квантами), величина которых определяется как раз той же формулой Е = h ν, которую он незадолго перед этим угадал. В этом — и только в этом — случае удавалось получить правильную формулу для спектра излучения.

Соотношение Е = h ν нельзя доказать логически, как нельзя обосновать закон всемирного тяготения. Они есть — так устроен мир. Более того, только приняв их и с помощью их можно объяснить другие явления природы. И спектр абсолютно черного тела — тоже.

Формально предположение Планка было предельно ясным и простым но, по существу, противоречило всему прежнему опыту физики и годами воспитанной интуиции. Вспомните, мы много раз подчеркивали, что излучение — это волновой процесс. А если так, то энергия в этом процессе должна передаваться непрерывно, а не порциями — квантами. Это неустранимое противоречие Планк сознавал как никто другой. Когда он вывел свою знаменитую формулу, ему было 42 года, но почти всю остальную жизнь он страдал от логического несовершенства им же созданной теории. У последующих поколения физиков это чувство притупилось: они уже знали готовый результат и научились мыслить по-новому.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*