Александр Филиппов - Многоликий солитон
В знаменитой серии работ 1820—1825 гг. Ампер заложил основы единой теории электричества и магнетизма и назвал ее электродинамикой. Затем последовали великие открытия гениального самоучки Майкла Фарадея (1791—1867), сделанные им в основном в 30—40-х годах,— от наблюдения электромагнитной индукции в 1831 г. до формирования к 1852 г. понятия электромагнитного поля. Свои поражавшие воображение современников опыты Фарадей тоже ставил, используя самые простые средства.
В 1853 г. Герман Гельмгольц, о котором будет идти речь далее, напишет: «Мне удалось познакомиться с Фарадеем, действительно первым физиком Англии и Европы… Он прост, любезен и непритязателен, как ребенок; такого располагающего к себе человека я еще не встречал… Он был всегда предупредителен, показал мне все, что стоило посмотреть. Но осматривать пришлось немного, так как ему для его великих открытий служат старые кусочки дерева, проволоки и железа».
В это время электрон еще неизвестен. Хотя подозрения о существовании элементарного электрического заряда появились у Фарадея уже в 1834 г. в связи с открытием законов электролиза, научно установленным фактом его существование стало лишь в конце столетия, а сам термин «электрон» будет введен только в 1891 г.
Полная математическая теория электромагнетизма еще не создана. Ее творцу Джеймсу Кларку Максвеллу в 1834 г. было всего три года от роду, и он подрастает в том же самом городе Эдинбурге, где читает лекции по натурфилософии герой нашего рассказа. В это время физика, которая еще не разделилась на теоретическую и экспериментальную, только начинает математизироваться. Так, Фарадей в своих работах не применял даже элементарной алгебры. Хотя Максвелл и скажет позже, что он придерживается «не только идей, но и математических методов Фарадея», это утверждение можно понять лишь в том смысле, что идеи Фарадея Максвелл сумел перевести на язык современной ему математики. В «Трактате об электричестве и магнетизме» он писал:
«Может быть, для науки было счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому у него не было соблазна углубляться в интересные, но чисто математические исследования, которых потребовали бы его открытия, если бы они были представлены в математической форме… Таким образом, он имел возможность идти своим путем и согласовывать свои идеи с полученными фактами, пользуясь естественным, не техническим языком… Приступив к изучению труда Фарадея, я установил, что его метод понимания явлений был также математическим, хотя и не представленным в форме обычных математических символов. Я также нашел, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков».
Если вы спросите меня, назовут ли нынешний век
железным веком или веком пара и электричества,
я отвечу, не задумываясь, что наш век будет назы-
ваться веком механического мировоззрения…
Л. Больцман
В то же время механика систем точек и твердых тел, как и механика движений жидкостей (гидродинамика), были уже существенно математизированы, т. е. они в значительной степени стали математическими науками. Задачи механики систем точек были полностью сведены к теории обыкновенных дифференциальных уравнений (уравнения Ньютона 1687 г., более общие уравнения Лагранжа 1788 г.), а задачи гидромеханики к теории так называемых дифференциальных уравнений с частными производными (уравнения Эйлера 1755 г., уравнения Навье 1823 г.). Это не значит, что все задачи были решены. Наоборот, в этих науках были впоследствии сделаны глубокие и важные открытия, поток которых не иссякает и в наши дни. Просто механика и гидромеханика достигли того уровня зрелости, когда их основные физические принципы были отчетливо сформулированы и переведены на язык математики.
Естественно, что эти глубоко разработанные науки служили основой для построения теорий новых физических явлений. Понять явление для ученого прошлого века значило объяснить его на языке законов механики. Образцом последовательного построения научной теории считалась небесная механика. Итоги ее развития были подведены Пьером Симоном Лапласом (1749—1827) в монументальном пятитомном «Трактате о небесной механике», вышедшем в свет в первой четверти века. Эта работа, в которой были собраны и обобщены достижения гигантов ХVIII в. Бернулли, Эйлера, Д'Аламбера, Лагранжа и самого Лапласа, оказала глубокое влияние на формирование «механического миропонимания» в ХIХ в.
Заметим, что в том же 1834 г. в стройную картину классической механики Ньютона и Лагранжа был добавлен завершающий мазок — знаменитый ирландский математик Уильям Роуэн Гамильтон (1805—1865) придал уравнениям механики так называемый канонический вид (согласно словарю С. И. Ожегова «канонический» означает «принятый за образец, твердо установленный, соответствующий канону») и открыл аналогию между оптикой и механикой. Каноническим уравнениям Гамильтона суждено было сыграть выдающуюся роль в конце века при создании статистической механики, а оптико-механическая аналогия, установившая связь между распространением волн и движением частиц, была использована в 20-е годы нашего века творцами квантовой теории. Идеи Гамильтона, который первым глубоко проанализировал понятие волн и частиц и связи между ними, сыграли немалую роль и в теории солитонов.
Развитие механики и гидромеханики, так же как и теории деформаций упругих тел (теории упругости), подстегивалось потребностями развивающейся техники. Дж. К. Максвелл много занимался также и теорией упругости, теорией устойчивости движения с приложениями к работе регуляторов, строительной механикой. Более того, разрабатывая свою электромагнитную теорию, он постоянно прибегал к наглядным моделям: «…я сохраняю надежду при внимательном изучении свойств упругих тел и вязких жидкостей найти такой метод, который позволил бы дать и для электрического состояния некоторый механический образ… (ср. с работой: Уильям Томсон «О механичееком представлении электрических, магнитных и гальванических сил», 1847 г.)».
Другой знаменитый шотландский физик Уильям Томсон (1824—1907), впоследствии получивший за научные заслуги титул лорда Кельвина, вообще считал, что все явления природы необходимо сводить к механическим движениям и объяснять их на языке законов механики. Взгляды Томсона оказали сильное влияние на Максвелла, особенно в его молодые годы. Удивительно, что Томсон, близко знавший и ценивший Максвелла, одним из последних признал его электромагнитную теорию. Это произошло только после знаменитых опытов Петра Николаевича Лебедева по измерению светового давления (1899 г.): «Я всю жизнь воевал с Максвеллом… Лебедев заставил меня сдаться…»
Начало теории волн
Хотя основные уравнения, описывающие движения жидкости, в 30-е годы ХIХ в. были уже получены, математическая теория волн на воде только начала создаваться. Простейшая теория волн на поверхности воды была дана Ньютоном в его «Математических началах натуральной философии», впервые изданных в 1687 г. Сто лет спустя знаменитый французский математик Жозеф Луи Лагранж (1736—1813) назвал этот труд «величайшим произведением человеческого ума». К сожалению, эта теория была основана на неправильном допущении, что частицы воды в волне просто колеблются вверх вниз. Несмотря на то, что Ньютон не дал правильного описания волн на воде, он верно поставил задачу, и его простая модель вызвала к жизни другие исследования. Впервые правильный подход к поверхностным волнам был найден Лагранжем. Он понял, как можно построить теорию волн на воде в двух простых случаях — для волн с малой амплитудой («мелкие волны») и для волн в сосудах, глубина которых мала по сравнению с длиной волны («мелкая вода»). Лагранж не занимался детальной разработкой теории волн, так как его увлекали другие, более общие математические проблемы.
Много ли есть людей, которые, любуясь игрой волн
на поверхности ручейка, думают, как найти уравнения,
по которым можно было бы вычислить форму любого волнового
гребня?
Л. Больцман
Вскоре было найдено точное и удивительно простое решение уравнений, описывающих волны на воде. Это первое, и одно из немногих точных, решение уравнений гидромеханики получил в 1802 г. чешский ученый, профессор математики в Праге Франтишек Йозеф Герстнер (1756—1832)*).