KnigaRead.com/

Мичио Каку - Гиперпространство

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Мичио Каку, "Гиперпространство" бесплатно, без регистрации.
Перейти на страницу:

Одно из преимуществ ранней молодости в том, что ей не страшна мирская ограниченность, которая обычно оказывается непреодолимой для большинства взрослых. Не оценив возможных препятствий, я поставил перед собой цель самостоятельно сконструировать ускоритель частиц. Я изучал научную литературу, пока не пришел к убеждению, что сумею собрать бетатрон, способный разгонять электроны до миллионов электронвольт. (Миллион электронвольт — энергия, которую приобретают электроны, ускорившиеся в поле, созданном разностью потенциалов в миллион вольт.)

Первым делом я приобрел немного натрия-22, который радиоактивен и естественным образом излучает позитроны (аналог электронов в антиматерии). Затем сконструировал так называемую «камеру Вильсона», в которой следы субатомных частиц становятся видимыми. Мне удалось сделать сотни прекрасных снимков следов, которые оставляет антиматерия. Потом я принялся промышлять вокруг крупных складов электроники и собирать необходимые детали и оборудование, в том числе сотни фунтов лома трансформаторной стали, и построил в гараже бетатрон на 2,3 млн эВ — достаточно мощный, чтобы произвести пучок позитронов. Для изготовления гигантских магнитов, необходимых для бетатрона, я убедил родителей помочь мне намотать 22 мили (около 35 км) медной проволоки на школьном футбольном стадионе. Рождественские каникулы мы провели на 50-ярдовой линии поля, наматывая и собирая массивные катушки, вызывающие искривление траекторий быстрых электронов.

Получившийся бетатрон весом 300 фунтов (около 136 кг) и мощностью 6 кВт полностью потреблял всю энергию в доме. Когда я включал его, все предохранители обычно вылетали, дом внезапно погружался во тьму. Наблюдая за тем, как в доме периодически воцаряется мрак, мама только качала головой. (Мне казалось, она теряется в догадках, за что ей достался ребенок, который, вместо того чтобы играть в бейсбол или баскетбол, сооружает в гараже какие-то громоздкие электрические машины.) К моей радости, машина успешно создала магнитное поле, в 20 тысяч раз превосходящее по мощности магнитное поле Земли и необходимое для ускорения пучка электронов.

Столкновение с пятым измерением

Наша семья была бедной, поэтому мои родители опасались, что я не сумею продолжить эксперименты и учебу. К счастью, награды, которых удостоились мои исследовательские проекты, привлекли внимание ученого-атомщика Эдварда Теллера. Его жена великодушно помогла мне получить стипендию для четырехлетнего обучения в Гарварде, благодаря чему я осуществил свою мечту.

Парадокс, но хотя в Гарварде я начал официально изучать теоретическую физику, именно там постепенно угасло мое увлечение многомерностью. Подобно другим физикам, я начал с подробной и всесторонней программы изучения высшей математики каждой из сил природы по отдельности, рассматривая их как совершенно обособленные друг от друга. До сих пор помню, как решал задачу по электродинамике для моего преподавателя, а потом спросил его, как могло бы выглядеть решение, если бы в высшем измерении пространство было искривлено. Преподаватель посмотрел на меня странно, словно сомневался, что я в своем уме. Вскоре я научился абстрагироваться от своих прежних детских представлений о пространстве высших измерений, как делали многие до меня. Мне объяснили, что гиперпространство — неподходящий предмет для серьезных исследований.

Этот непоследовательный подход к физике меня не устраивал, мыслями я часто возвращался к карпам, живущим в чайном саду. Несмотря на то что формулы для электричества и магнетизма, которыми мы пользовались и которые были выведены Максвеллом в XIX в., оказывались на удивление полезными, выглядели они весьма условными. Мне казалось, что физики (совсем как карпы) выдумали эти «силы», чтобы замаскировать наше невежество, отсутствие у нас представлений о том, как одни объекты могут вызывать перемещение других при отсутствии непосредственных контактов.

Во время учебы я узнал, что в XIX в. предметом наиболее бурных споров было распространение света в вакууме. (Свет звезд способен без труда преодолевать триллионы триллионов миль в вакууме космического пространства.) Эксперименты также подтвердили: вне всякого сомнения, свет — это волна. Но если свет — волна, значит, что-то должно «волноваться».

Звуковым волнам нужен воздух, волнам в воде — вода, а поскольку в вакууме волнам образовываться негде, получается парадокс. Как свет может быть волной, если нечему волнообразно колебаться? В итоге физики придумали вещество под названием эфир, которое заполняет вакуум и действует как среда для распространения света. Однако эксперименты убедительно доказали, что «эфира» не существует[2].

И наконец, во время учебы в аспирантуре Калифорнийского университета в Беркли я совершенно случайно узнал, что существует и другое, хоть и спорное объяснение, каким образом свет может перемещаться в вакууме. Эта альтернативная теория выглядела настолько бредовой, что знакомство с ней стало для меня потрясением. Подобный шок испытали многие американцы, впервые услышав, что президента Джона Кеннеди застрелили. При этом все они запомнили, в какой именно момент услышали шокирующее известие, что при этом делали, с кем говорили. Мы, физики, тоже испытываем серьезный шок, когда впервые сталкиваемся с теорией Калуцы-Клейна. Поскольку эту теорию долгое время считали спекуляцией и домыслом, в учебные программы она никогда не входила, молодым физикам представлялась возможность открыть ее для себя случайно в процессе чтения внеучебных материалов.

Эта альтернативная теория дала свету простейшее объяснение: на самом деле свет — вибрация пятого измерения, или, как его называли мистики, — четвертого. Если свет и способен распространяться в вакууме, то лишь благодаря вибрации самого вакуума, так как в действительности «вакуум» существует в четырех пространственных измерениях и одном временном. Добавляя пятое измерение, силу тяжести и свет можно объединить на удивление простым способом. Вспоминая о впечатлениях, полученных в детстве в чайном саду, я вдруг понял, что это и есть математическая теория, которую я искал.

Исходная теория Калуцы-Клейна в силу технических трудностей более полувека оставалась бесполезной. Однако в последние десять лет ситуация изменилась. Более совершенные варианты теории, такие как теория супергравитации и особенно теория суперструн, наконец устранили ее неувязки. Чуть ли не в одночасье теорию многомерности начали отстаивать и продвигать в исследовательских лабораториях всей планеты. Многие ведущие физики мира признали, что могут существовать и другие измерения, помимо обычных четырех пространственных и одного временного. Эта идея была в центре внимания интенсивных научных исследований. Многие физики-теоретики в настоящее время придерживаются мнения, что исследования многомерности могут стать решающим шагом к созданию всеобъемлющей теории, объединяющей законы природы, — теории гиперпространства.

Если это предположение окажется справедливым, будущие историки науки, скорее всего, смогут утверждать, что одной из великих концептуальных революций XX в. стало понимание, что гиперпространство может оказаться ключом, открывающим самые сокровенные тайны природы и всего сущего.

Из искры этой основополагающей концепции родилось пламя множества научных исследований: несколько тысяч статей, написанных физиками-теоретиками из крупнейших лабораторий мира, были посвящены изучению свойств гиперпространства. Страницы двух ведущих научных журналов — Nuclear Physics и Physics Letters — заполнились статьями с анализом самой теории. Было проведено более 200 международных физических конференций с целью выявления значения многомерности.

К сожалению, мы все еще далеки от экспериментального подтверждения идеи, что наша Вселенная многомерна. (О том, что именно потребовалось бы для обоснования теории и, возможно, управления мощью гиперпространства, мы поговорим далее в этой книге.) Так или иначе, в настоящее время эта теория решительно утвердилась на позициях законной отрасли современной теоретической физики. К примеру, Институт перспективных исследований в Принстоне, где Эйнштейн провел последние десятилетия своей жизни (и где была написана данная книга), в настоящее время является одним из центров активных исследований многомерного пространства-времени.

Стивен Вайнберг, удостоенный Нобелевской премии по физике в 1979 г., подытожил эту концептуальную революцию, сравнительно недавно заметив, что теоретическая физика приобретает все большее сходство с научной фантастикой.

Почему мы не видим высшие измерения?

Поначалу все эти революционные идеи кажутся нам странными, поскольку трехмерность окружающего нас повседневного мира мы принимаем как данность. Как отмечал ныне покойный физик Хайнц Пейджелс, «одна из характеристик нашего физического мира настолько очевидна, что никогда не ставит в тупик большинство людей, — это факт трехмерности пространства»[3]. Почти интуитивно мы понимаем, что любой предмет можно описать с помощью его длины, ширины и высоты. Указав три числа, можно определить положение любой точки в пространстве. Когда мы хотим увидеться с кем-нибудь за обедом в Нью-Йорке, то говорим: «Встречаемся на 24-м этаже здания на углу 42-й улицы и Первой авеню». Два числа указывают конкретное пересечение улиц, третье — высоту над землей.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*