KnigaRead.com/

Лев Ландау - Физика для всех. Молекулы

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Лев Ландау, "Физика для всех. Молекулы" бесплатно, без регистрации.
Перейти на страницу:

АВАВАВАВАВ,

то такую молекулу называют регулярным полимером. Но часто мы имеем дело с молекулами, где нет такой закономерности следования. Молекулу

АВВАВАААВВВВАВАВААВВА

называют нерегулярным полимером.

Естественную молекулу белка также называют полимером. Белки построены из 20 кусочков разного сорта. Эти кусочки называются аминокислотными остатками.

Между молекулами белков и синтетическими молекулами, построенными из нескольких кусочков, расположенных в беспорядке, имеется одно существенное различие. В куске синтетического полимера нет двух одинаковых молекул. Беспорядочное следование кусочков, из которых состоит цепочечная молекула, в одной молекуле - одно, а в другой - другое. В большинстве случаев это обстоятельство влияет отрицательно на свойства полимера. Раз молекулы непохожи друг на друга, то они не могут хорошо упаковаться. Из таких молекул в принципе нельзя построить идеальный кристалл. Вещества этого типа характеризуют "степенью кристалличности".

В последние десятилетия химики научились строить регулярные. полимеры, и промышленность получила в свое распоряжение много новых ценных материалов.

Что же касается природных белков определенного сорта (скажем, гемоглобина быка), то их молекулы хоть и построены беспорядочно, но они все одинаковые. Молекулу белка данного сорта можно сравнить со страницей книги: буквы следуют друг за другом в случайном, но вполне определенном порядке. Все молекулы белка - это копии одной и той же страницы.

Гибкость молекул

Длинную молекулу можно сравнить с рельсом. На длине 0,1 мм уместится 106 атомов. Поперечные размеры молекулы полиэтилена - что-нибудь около 3-4 Å. Так что длина молекулы больше ее поперечного сечения в сотни тысяч раз. Так как рельс имеет толщину около 10 см, то зрительным образом длинной молекулы будет рельс длиной 10 км.

Это не значит, конечно, что не приходиться иметь дело с.короткими молекулами. Вообще, если не принять специальных мер, то в полимерном веществе мы найдем молекулы разной длины - от таких, которые состоят из нескольких звеньев, до таких, которые построены из тысяч звеньев.

Итак, длинная молекула похожа на рельс. Похожа, но не совсем. Рельс согнуть трудно, а длинная молекула гнется легко. Гибкость макромолекулы не похожа на гибкость ивового прута. Она возникает из-за особой способности всех молекул: одна часть молекулы может вращаться около другой части, если они соединены связями, которые химики называют одинарными (одновалентными). Нетрудно сообразить, что благодаря этому свойству полимерные молекулы могут принять самые причудливые формы. На рис. 9.2 показана модель гибкой молекулы в трех положениях. Если молекула плавает в растворе, то она большей частью сворачивается в клубок.

Рис. 9.2

Растяжение резинового шнура происходит благодаря разворотам, молекул. Так что упругость полимеров имеет совсем другую природу, чем упругость металлов. Если растянутый шнур отпустить, то он сократится. Значит, молекула стремится из линейной формы перейти в клубкообразную. В чем причина? Их могут быть две. Во-первых, можно допустить, что состояние клубка энергетически более выгодно; во-вторых, можно предположить, что сворачивание содействует возрастанию энтропии. Итак, какой закон термодинамики командует этим поведением: первый или второй? Надо думать, что оба. Но без сомнения состояние клубка выгодно и с точки зрения энтропии. Ведь чередование атомов молекулы, свернутой в клубок, более беспорядочно, чем в вытянутой молекуле. А мы знаем, что беспорядок и энтропия находятся в близком родстве.

Что же касается выигрыша в энергии, то он происходит за счет плотной упаковки атомов, составляющих полимерную молекулу. Сворачивание молекулы в спираль или клубок происходит таким образом, чтобы было обеспечено максимальное число контактов между валентно не связанными атомами.

Директор-распорядитель клетки

Все живое состоит из клеток. Все клетки имеют ядра. Во всех ядрах имеются особые полимерные молекулы, которые можно было бы назвать "ядерными". Но русское прилагательное не в ходу. Эти молекулы носят название нуклеиновых кислот. Среди них есть знаменитости. Знаменитые нуклеиновые кислоты настолько хорошо известны, что их сокращенные трехбуквенные символы РНК (рибонуклеиновая кислота) ДНК (дезоксирибонуклеиновая кислота) можно встретить на страницах романов и повестей.

Суперзвездой среди макромолекул является молекула ДНК. Причина тому следующая: эта полимерная молекула отвечает за рост организма, ибо - правда с помощью молекул РНК - фабрикует белки; молекула ДНК несет в себе кодовую запись признаков, однозначно характеризующих организм. Иными словами, ДНК ответственна за передачу наследственности от родителей к потомкам.

Что же собой представляют молекулы этих полимеров? Упорядочены ли звенья, составляющие молекулу, или расположены в беспорядке? Дело обстоит следующим образом. Одиночная молекула ДНК представляет собой цепь, хребет которой имеет одну и ту же структуру для молекул ДНК разных организмов. К хребту цепи присоединены четыре разных молекулы. Две из них побольше размером, две другие в два раза меньше. Атомы, составляющие основную цепь молекулы, расположены упорядочено, а вот "листочки", присоединенные к ветке, следуют друг за другом без всякого порядка. Однако замечательным и важнейшим обстоятельством является то, что все молекулы ДНК одного индивидуума тождественны и непохожи (в отношении следования "листочков") на молекулы другой особи даже того же вида.

Именно из-за различия в молекулах ДНК отличаются друг от друга все люди, все львы, все березы. Отличаются не только по этой причине, но главным образом именно из-за того, что "листочки" следуют друг за другом в разном порядке.

Одиночная молекула ДНК представляет собой спираль. Но в ядрах клетки эти молекулы сплетаются попарно в двойную спираль. Атомы двойной спирали плотно упакованы и образуют очень длинную жесткую молекулу, которая пересекает все поле зрения электронного микроскопа.

Определение структуры молекулы ДНК было произведено на основании химических сведений о нуклеиновых кислотах, знания правил сворачивания и упаковки молекул, которые требуют создания как можно более плотной упаковки атомов, а также результатов рентгеноструктурного анализа.

То, что молекула ДНК образует двойную спираль, позволило сразу же предложить гипотезу о передаче наследственности. При делении клеток молекулы ДНК "родителей" разворачиваются и новая молекула ДНК "наследника" строится из отрезков двух разных молекул ДНК "отца" и "матери". Эти отрезки молекул ДНК и играют роль генов, в существовании которых многие биологи были уверены еще задолго до того, когда стала ясной молекулярная структура носителей наследственности.

Работа молекулы ДНК - директора-распорядителя жизненных процессов - в настоящее время известна во всея деталях и описана в сотнях иаучных, научно-популярных и учебных книг.

Глобулярные кристаллы

Способность сворачиваться в клубок, или, как часто говорят, в глобулу, свойственна многим молекулам. Очень аккуратные и вполне тождественные друг другу глобулы создают молекулы белка. Тут есть одна тонкая причина. Дело в том, что молекула белка содержит части, которые "любят" воду, и такие кусочки, которые относятся к воде отрицательно. Кусочки, не любящие воду, называют гидрофобными. Сворачивание молекулы белка диктуется одним стремлением: все гидрофобные части должны спрятаться внутрь глобулы. Именно это и приводит к тому, что в растворе белка плавают глобулы, похожие друг на друга, как близнецы. Белковые глобулы более или менее шарообразны. Глобула имеет размер 100-300 Å, так что увидеть ее в электронный микроскоп совсем нетрудно. Первые электронно-микроскопические картинки глобулярных кристаллов были получены несколько десятков лет тому назад, когда техника электронной микроскопии была еще совсем слабой. На рис. 9.3 приведена такая фотография для вируса табачной мозаики. Вирус посложнее белка, но для иллюстрации нашей мысли - стремления биологических глобул расположиться о высоким порядком - этот пример вполне подходит.

Рис. 9.3

Но почему авторы не приводят картины белкового кристалла? Дело вот в чем. Белковые кристаллы являются кристаллами совершенно необычными. Они содержат огромный процент воды (иногда до 90%). Это делает их съемку в электронном микроскопе невозможной. Исследование белковых кристаллов можно производить, лишь манипулируя ими в растворе. Тонюсенькая колбочка содержит раствор и монокристалл белка. Этот объект можно изучать всеми физическими методами, в том числе и с помощью рентгеноструктурного анализа, о котором мы уже неоднократно упоминали.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*