Леонид Пономарев - По ту сторону кванта
«В истине ценно лишь то, в чем можно сомневаться. «Солнце есть» — в этом нельзя сомневаться… Это истица, но в ней нет самостоятельной ценности. Она никому не нужна. За нее никто не пойдет на костер. Даже, говоря яснее, это не истина, а определение. «Солнце есть» — только особое выражение вместо: такой-то предмет я называю Солнцем».
«Истина получает ценность, лишь когда становится частью возможного миросозерцания. Но в то же время она становится оспоримой, по крайней мере, является возможным спорить о ней… Мало того, ценная истина непременно имеет право на противоположную, соответствующую ей истину; иначе сказать — суждение, прямо противоположное истине, в свою очередь, истинно…»
Знаменательно, что многие из этих утверждений почти дословно предвосхищают формулировки Бора. Не все знают, что и Бор пришел к своему принципу дополнительности не «от физики», а «от философии». Идея дополнительности созрела в нем еще в юношеские годы под влиянием философов Дании. В дальнейшем она крепла и уточнялась, пока не нашла наконец достойного применения в атомной физике.
Тот же Валерий Брюсов двадцать лет спустя, в 1922 году, еще до создания квантовой механики, написал стихотворение МИР ЭЛЕКТРОНА Быть может, эти электроны — Миры, где пять материков: Искусства, знанья, войны, троны И память сорока веков! Еще, быть может, каждый атом — Вселенная, где сто планет, Там все, что здесь в объеме сжатом, Но также то, чего здесь нет. Их меры малы, но все та же Их бесконечность, как и здесь, Там скорбь и страсть, как здесь, и даже Там та же мировая спесь. Их мудрецы, свой мир бескрайнийПоставив центром бытия, Спешат проникнуть в искры тайныИ умствуют, как ныне я…
ГЛАВА ДЕВЯТАЯ
«Может быть, естествоиспытателя, покидающего область непосредственных чувственных восприятий с целью открытия более общих взаимосвязей, можно сравнить с альпинистом, который хочет подняться на вершину самой высокой горы для того, чтобы обозреть лежащую перед ним местность во всем ее многообразии. Альпинисту тоже необходимо покинуть плодородные населенные долины. По мере того как он поднимается, перед ним все шире и шире раскрывается окрестность, но вместе с тем все реже он видит вокруг себя признаки жизни. Наконец, он попадает в ослепительно яркую область льда и снега, где уже нет никакой жизни и дышать становится почти невозможно. Только пройдя эту область, он может достигнуть вершины. Но когда он взойдет на вершину, наступит момент, что вся расстилающаяся перед ним местность станет ему видна совершенно отчетливо, и, может быть, тогда область жизни не будет слишком далека от него… В предшествующие эпохи эти безжизненные области воспринимались только как суровые пустыни, вторжение в которые казалось кощунством по отношению к каким-то высшим силам, жестоко каравшим всех тех, кто осмеливался приблизиться к ним».
Глава девятаяЭти слова Гейзенберга хорошо поясняют тот качественный скачок, который произошел в сознании людей, когда они перешли от наблюдения явлений, непосредственно воздействующих на их органы чувств, к изучению атомных явлений. Этот перелом произошел в начале века, и он настолько важен, что мы еще раз поясним его на конкретном примере.
Представьте, что перед вами звучит натянутая струна. Вы слышите звук, видите вибрирующую струну, можете прикоснуться к ней рукой, и на основании этих данных в сознании у вас формируется образ физического явления, происходящего перед вами. Понятие «волновой процесс» возникает позднее, при наблюдении других, похожих явлений. Чтобы сделать это понятие однозначным, его закрепляют формулой, уравнением, позволяющим заранее предсказать весь процесс колебания струны. Это предсказание мы можем проверить, запечатлев, например, колебания струны на кинопленке…
Мы сознательно еще раз проследили цепочку:
явление — > образ — > понятие — > формула — > опыт,
которая лежит в основе всего физического знания. Последнее звено в этой цепи — опыт проверяет, насколько правильно мы представляем себе явление в целом на основе частичных знаний о нем.
Последнее звено цепочки опытовНо эта простая схема не поможет нам ответить на вопрос «Что такое атом?» просто потому, что явление «атом» не воздействует на наши органы чувств, и они не могут дать нам никакого, даже приблизительного, «образа атома». Поэтому вначале понятие «атом» возникло чисто умозрительно, без ссылок на органы чувств и в течение двадцати веков оставалось не более чем любопытной гипотезой, которая ничем не лучше других гипотез о строении материи.
Настоящая история атома началась с приходом науки, когда люди стали полагаться не только на свои органы чувств, но научились также доверять показаниям приборов. С помощью приборов они наблюдали, как ведут себя тела при растворении, при пропускании через раствор электрического тока, при нагревании, при освещении и при многих других воздействиях. Ученые не просто наблюдали эти явления, но изучали их, то есть измеряли температуру тел, длину волны излучаемого ими света и многое другое, о чем мы уже знаем. Результаты своих измерений они записывали в виде чисел, Вот эти-то числа и заменили физикам те непосредственные ощущения, которые доставляли им ранее органы чувств. Числа — вот единственное, чему они стали доверять, когда стали изучать явления, недоступные непосредственному восприятию. Имея в руках числа, они стали находить между ними связи и записывать эти связи в виде формул.
Но люди общаются не с помощью формул, а с помощью слов, и, чтобы рассказать о новых связях в природе, они придумывают понятия, которые соответствуют формулам. Иногда эти понятия очень необычны, но люди к ним быстро привыкают, учатся правильно пользоваться ими и даже создают для себя какие-то образы, которые они связывают с новыми понятиями.
Цепочка познания переворачивается:
В истории атома эту цепочку можно легко проследить: Фраунгофер, Кирхгоф и Бунзен обнаружили, что каждый атом испускает строго определенный набор спектральных линий (явление) и каждой спектральной линии соответствует число — длина волны λ, (опыт). Бальмер, Ридберг и Ритц нашли между этими числами простые связи (формула), а Бор показал, что их формулы следуют из единого принципа, который назвали квантованием (понятие). Наконец на основе этих опытов, формул и понятий возник образ — атом Бора.
Но опыты продолжались, они приносили новые числа и факты, которые уже не вмещались в рамки прежних формул, понятий и образов. И тогда возникла квантовая механика — единый принцип, из которого следовали все прежние эмпирические формулы и удачные догадки.
До сих пор мы довольно много узнали об опытах атомной физики и о понятиях, которые необходимо использовать, чтобы эти опыты объяснить. Но мы хотим большего: на этом новом, более высоком уровне знаний мы хотим создать >образ атома. Для этого нам нужно, хотя бы бегло, коснуться формул квантовой механики. Это необходимо — в конце концов красота логических построений в науке много важнее, чем эффекты неожиданных ассоциаций.
УРАВНЕНИЕ ШРЕДИНГЕРА
Предыдущие рассказы о квантовой механике почти убедили нас в том, что электрон в атоме не имеет определенного положения или хотя бы какой-нибудь орбиты, по которой он движется. Взамен этого мы пока что усвоили довольно туманную идею о том, что при движении в атоме электрон «расплывается».
Эту неопределенную идею Шредингеру удалось выразить весьма точно на однозначном языке формул. Уравнение Шредингера, как и всякий глубокий закон природы, нельзя вывести строго из более простых. Его можно только угадать. Шредингер так и сделал, и впоследствии признавался, что сам не вполне понимает, как это ему удалось. Но после того как уравнение угадано, надо еще научиться им пользоваться: надо знать, что означают все символы в уравнении и какие явления в атоме они отображают.
Уравнение Шредингера
[(d2 ψ)/(dx2) + 2m/ħ2][E — U(x)(x)]ψ = 0
мы уже приводили однажды и объясняли смысл входящих в него символов: ħ — постоянная Планка h, деленная на 2π m — масса электрона, Е — полная энергия электрона в атоме a U(х) — его потенциальная энергия, которая показывает, с какой силой притягивался бы электрон к ядру, если бы он был частицей и находился от него на расстоянии х. Но нам по-прежнему неясен смысл волновой функции пси (ψ). Чтобы ронять его, обратимся снова к аналогии с колеблющейся струной.
Уравнение ШредингераЕе уравнение