KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иосиф Шкловский, "Звезды: их рождение, жизнь и смерть" бесплатно, без регистрации.
Перейти на страницу:

Вычисленные равновесные концентрации изотопов не зависят от плотности вещества, ибо скорости всех реакций пропорциональны плотности. Первые два изотопных отношения не зависят также и от температуры. Ошибки в вычисленных равновесных концентрациях достигают нескольких десятков процентов, что объясняется неуверенностью в знании вероятности соответствующих реакции. В земной коре отношение = 89, = 270.

Для протон-протонной реакции равновесное состояние наступает по истечении огромного срока в 14 миллиардов лет. Вычисления, выполненные для T = 13 миллионам кельвинов, дают значения

(8.5)

Заметим, что для более низкой температуры T = 8 106 К 10-2, т.е. почти в сто раз больше. Следовательно, образующийся в недрах сравнительно холодных карликовых звезд изотоп 3He весьма обилен.

Кроме протон-протонной и углеродно-азотной реакции, при некоторых условиях могут иметь существенное значение и другие ядерные реакции. Представляют, например, интерес реакции протонов с ядрами легких элементов — дейтерия, лития, бериллия и бора: 6Li + 1H 3He + 4He; 7Li + 1H 24He; 10B + 21H 34He и некоторые другие. Так как заряд ядра — «мишени», с которой сталкивается протон, невелик, кулоновское отталкивание не так значительно, как в случае столкновений с ядрами углерода и азота. Поэтому скорость этих реакций сравнительно велика. Уже при температуре около миллиона кельвинов они идут достаточно быстро. Однако, в отличие от ядер углерода и азота, ядра легких элементов не восстанавливаются в процессе дальнейших реакций, а необратимо расходуются. Именно поэтому обилие легких элементов на Солнце и в звездах так ничтожно мало. Они уже давно «выгорели» на самых ранних стадиях существования звезд. Когда температура внутри сжимающейся под действием силы тяжести протозвезды достигнет 1 миллиона кельвинов, первые ядерные реакции, которые там будут протекать,— это реакции на легких ядрах. Тот факт, что в атмосфере Солнца и звезд наблюдаются слабые спектральные линии лития и бериллия, требует объяснения. Он может указывать на отсутствие перемешивания между самыми наружными слоями Солнца и «глубинными» слоями, где температура уже превышает 2 миллиона кельвинов — значение, при котором эти элементы «выгорели» бы. Следует, однако, иметь в виду и совершенно другую возможность. Дело в том, что, как сейчас доказано, в активных областях Солнца (там, где происходят вспышки) заряженные частицы ускоряются до весьма высоких энергий. Такие частицы, сталкиваясь с ядрами атомов, образующих солнечную атмосферу, могут давать (и дают!) различные ядерные реакции. Свыше 10 лет назад при помощи гамма-детектора, установленного на запущенном в США специализированном спутнике «OSO-7» («Седьмая орбитальная солнечная лаборатория»), были обнаружены во время яркой вспышки на Солнце 4 августа 1972 г. две спектральные линии в этом диапазоне. Одна линия, имеющая энергию квантов 0,511 МэВ, отождествляется с излучением, возникающим при аннигиляции электронов с позитронами, другая с энергией 2,22 МэВ излучается при образовании дейтерия из протонов и нейтронов. Эти важные эксперименты как раз и демонстрируют, что в активных областях Солнца и, конечно, звезд идут ядерные реакции. Только такими реакциями можно объяснить аномально высокое обилие лития в атмосферах некоторых звезд и наличие линий технеция у звезд редкого спектрального класса S. Ведь самый долгоживущий изотоп технеция имеет период полураспада около 200 000 лет. Именно по этой причине его нет на Земле. Только ядерные реакции в поверхностных слоях звезд могут объяснить наличие линий технеция в спектрах упомянутых выше звезд.

Если температура звездных недр по каким-либо причинам становится очень большой (порядка сотен миллионов кельвинов), что может случиться после того, как практически весь водород «выгорит», источником ядерной энергии становится совершенно новая реакция. Эта реакция получила название «тройной альфа-процесс». При столь высоких температурах сравнительно быстро идут реакции между альфа-частицами, так как «кулоновский барьер» уже легче преодолеть. В этом случае «высота» кулоновского барьера соответствует энергии в несколько миллионов электронвольт. При столкновениях эффективно просачиваться через барьер будут альфа-частицы с энергией порядка ста тысяч электронвольт. Заметим, что энергия тепловых движений частиц при такой температуре порядка десяти тысяч электронвольт. При таких условиях сталкивающиеся альфа-частицы могут образовывать радиоактивный изотоп бериллия 8Be. Этот изотоп очень быстро опять распадается на две альфа-частицы. Но может так случиться, что не успевшее еще распасться ядро 8Be столкнется с третьей альфа-частицей, конечно, при условии, что у последней достаточно высокая энергия, чтобы «просочиться» через кулоновский барьер. Тогда будет иметь место реакция 4He + 8Be 12C + , ведущая к образованию устойчивого изотопа углерода с выделением значительного количества энергии. При каждой такой реакции выделяется 7,3 миллиона электронвольт.

Хотя равновесная концентрация изотопа 8Ве совершенно ничтожна (например, при температуре сто миллионов кельвинов на десять миллиардов -частиц приходится всего лишь один изотоп 8Ве), все же скорость «тройной» реакции оказывается достаточной для выделения в недрах очень горячих звезд значительного количества энергии. Зависимость энерговыделения от температуры исключительно велика. Например, для температур порядка 100—200 миллионов кельвинов

(8.6)

где, как и раньше, Y означает парциальную концентрацию гелия в недрах звезды. В случае, когда почти весь водород «выгорел», величина Y довольно близка к единице. Заметим еще, что энергетически «горение» водорода является более выгодным процессом, так как в этом случае на грамм «горючего» выделяется в 10 раз больше энергии.

 


Рис. 8.1: Зависимость ядерного энерговыделения от температуры для трех реакций.  

На рис. 8.1 в логарифмическом масштабе приведена зависимость энерговыделения от температуры для трех важнейших реакций, которые могут проходить в недрах звезд: протон-протонной, углеродно-азотной и «тройного» столкновения альфа-частиц, которое только что обсуждалось. Стрелками указано положение различных звезд, для которых соответствующая ядерная реакция имеет наибольшее значение.

Резюмируя этот параграф, мы должны сказать, что успехи ядерной физики привели к полному объяснению природы источников звездной энергии.

Принято думать, что богатейший мир атомных ядер стал известен человечеству после выдающегося открытия Беккерелем радиоактивности. С этим фактором, конечно, трудно спорить. Но на протяжении всей своей истории человечество купалось в лучах Солнца. Давно уже стало банальным утверждение, что источником жизни на Земле является Солнце. Но ведь солнечные лучи — это переработанная ядерная энергия. Это означает, что не будь в природе ядерной энергии, не было бы жизни на Земле. Будучи всем обязаны атомному ядру, люди на протяжении долгих тысячелетий даже не подозревали о его существовании. Но, с другой стороны, смотреть — это еще не значит открыть. И мы не покушаемся на славу замечательного французского ученого...

Ядерные процессы играют, как мы видели в этом параграфе, фундаментальную роль в длительной, спокойной эволюции звезд, находящихся на главной последовательности. Но, кроме того, их роль является определяющей при быстро протекающих нестационарных процессах взрывного характера, являющихся поворотными этапами в эволюции звезд. Об этом будет идти речь в третьей части этой книги. Наконец, даже, казалось бы, для такой в высшей степени тривиальной и очень «спокойной» звезды, какой является наше Солнце, ядерные реакции открывают возможность объяснения явлений, которые представляются очень далекими от ядерной физики. Об этом речь пойдет в следующем параграфе.

Глава 9 Проблемы нейтринного излучения Солнца

До сравнительно недавнего времени одна из важнейших проблем астрономии — проблема внутреннего строения и эволюции звезд решалась совместными усилиями астрофизиков-теоретиков и астрономов-наблюдателей. Как уже неоднократно подчеркивалось, эта проблема никоим образом не могла быть решена без непрерывного контроля выводов теории астрономическими наблюдениями. Особенно большое значение для теории имел анализ прецизионных наблюдений блеска и цвета звезд, входящих в состав скоплений (см. § 12). Считалось и считается, что справедливость теории внутреннего строения и эволюции звезд объясняется возможностью на основе этой теории объяснить ряд тонких особенностей диаграммы Герцшпрунга — Рессела для различных скоплений звезд, имеющих различный возраст. Все же неопределенное ощущение неудовлетворительности, несомненно, остается. В идеале было бы неплохо иметь возможность непосредственно получить основные характеристики звездных недр путем прямых наблюдений.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*