KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения

Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Барри Паркер, "Мечта Эйнштейна. В поисках единой теории строения" бесплатно, без регистрации.
Перейти на страницу:

После отрыва излучения от вещества Вселенная по-прежнему состояла из довольно однородной смеси частиц и излучения. В ней уже содержалось вещество, из которого впоследствии образовались галактики, но пока его распределение оставалось в основном равномерным. Известно, однако, что позже наступил этап неоднородности, иначе сейчас не было бы галактик. Но откуда же взялись флуктуации, приведшие к появлению галактик?

Астрономы полагают, что они проявились очень рано, практически сразу же после Большого взрыва. Что их вызвало? Точно неизвестно и, может быть, никогда не будет известно наверняка, но они каким-то образом появились практически в самый первый момент. Возможно, поначалу они были довольно велики, а затем сгладились, а может быть, наоборот, увеличивались с течением времени. Известно, однако, что по окончании эпохи излучения эти флуктуации стали расти. С течением времени они разорвали облака частиц на отдельные части. Эти гигантские клубы вещества расширялись вместе со Вселенной, но постепенно стали отставать. Затем под действием взаимного притяжения частиц начало происходить их уплотнение. Большинство этих образований поначалу медленно вращалось, и по мере уплотнения скорость их вращения возрастала.

Турбулентность в каждом из фрагментов была весьма значительна, и облако дробилось ещё больше, до тех пор пока не остались области размером со звезду. Они уплотнялись и образовывали так называемые протозвёзды (облако в целом называется протогалактикой). Затем стали загораться звёзды и галактики приобрели свой нынешний вид.

Эта картина довольно правдоподобна, но всё же остаётся ряд нерешённых проблем. Как, например, выглядели ранние формы галактик (их обычно называют первичными галактиками)? Так как пока ни одна из них не наблюдалась, сравнивать теоретические построения не с чем.

Есть и другие трудности. Задумаемся над тем, что мы видим, вглядываясь в глубины космоса. Ясно, что при этом мы заглядываем в прошлое. Почему? Да потому, что скорость света не бесконечна, а имеет предел; для того чтобы дойти до нас от удалённого объекта, свету требуется некоторое время. Например, галактику, находящуюся от нас на расстоянии 10 миллионов световых лет, мы видим такой какой она была 10 миллионов лет назад; галактику на расстоянии 3 миллиарда световых лет мы наблюдаем отстоящей от нас во времени на 3 миллиарда лет. Всматриваясь ещё дальше, мы видим всё более тусклые галактики, и наконец они становятся вовсе не видны – за определённой границей можно наблюдать только так называемые радиогалактики, которые, похоже, во многих случаях находятся в состоянии взрыва. За этой границей расположены особенно странные галактики – мощные источники радиоизлучения с чрезвычайно плотными ядрами.

Наконец, на самой окраине Вселенной можно разглядеть только квазары. Их обнаружили в начале 60-х годов, и с тех пор они остаются для нас загадкой. Они испускают больше энергии, чем целая галактика (а ведь в неё входят сотни миллиардов звёзд), при весьма малом размере – не больше Солнечной системы. По сравнению с количеством излучаемой энергии такой размер просто смехотворен. Как может столь малый объект давать столько энергии? На эту тему в последние годы много рассуждали, в основном применительно к чёрным дырам, но ответа пока нет. В соответствии с наиболее приемлемой моделью, квазар – это плотный сгусток газа и звёзд, находящийся поблизости от чёрной дыры. Энергия выделяется, когда газ и звёздное вещество поглощаются чёрной дырой.

Важно помнить, что мы видим все эти объекты такими, какими они были давным-давно, когда Вселенной было, скажем, всего несколько миллионов лет от роду. Поскольку на самой окраине видны только квазары, напрашивается вывод, что они есть самая ранняя форма галактик. Ближе к нам находятся радиогалактики, так, может быть, они произошли от квазаров? Ещё ближе обычные галактики, которые, стало быть, произошли от радиогалактик? Получается как бы цепь эволюции: квазары, радиогалактики и обычные галактики. Хотя такие рассуждения кажутся вполне разумными, большинство астрономов с ними не соглашается. Одно из возражений – разница в размерах между квазарами и галактиками. Следует, однако, упомянуть, что недавно вокруг некоторых квазаров обнаружены туманности. Возможно, эти туманности затем конденсируются в звёзды, которые объединяются в галактики. Из-за упомянутой выше и других трудностей бо?льшая часть астрономов предпочитает считать, что и на самых дальних рубежах есть первичные галактики, но они слишком слабы и потому не видны. Более того, недавно обнаружены новые свидетельства, подтверждающие такое предположение, – зарегистрировано несколько галактик, находящихся на 2 миллиарда световых лет дальше, чем самая дальняя из известных галактик. Они настолько слабы, что для получения их изображения на фотопластинке понадобилась экспозиция 40 часов.


Заключение

В предыдущих главах мы подробно разобрали строение ранней Вселенной: «вымораживание» фундаментальных сил, появление фонового излучения, образование галактик и т.п. Но как учёным узнать, верны ли их теории? Ведь просто подойти к телескопу и посмотреть на Вселенную, которой исполнилось несколько секунд, невозможно. Проверка теорий – задача весьма трудная, но всё же выполнимая. Некоторые явления во Вселенной являются прямым следствием событий далёкого прошлого. Мы называем их реликтовыми. Основные среди них следующие:

фоновое излучение (температура около 3 K); избыток гелия (около 25% общей массы); однородность и изотропность пространства; наличие флуктуации, следующее из существования галактик; соотношение между веществом и излучением.

В идеале теория, предложенная учёными (в нашем случае теория Большого взрыва), должна предсказывать определённые события, скажем, наличие излучения с температурой 3000 K. Применяя нашу теорию, можно проследить изменение этой температуры до наших дней. Теория предсказывает, что сейчас она должна составлять около 3 K. Мы начинаем поиски излучения и, как уже говорилось, находим его. То же относится и к гелию: теория предсказывает, что гелий должен составлять около 25% всего вещества во Вселенной, и мы видим, что это число очень близко к реальному. С другими реликтами, впрочем, возникают сложности: например, мы до сих пор не знаем точно, в результате каких флуктуации появились галактики. Кроме того, теория Большого взрыва предсказывает существование большого числа магнитных монополей (магнитные монополи – это частицы с единственным магнитным полюсом, тогда как у обычного магнита полюсов всегда два – северный и южный). Однако до сих пор ни одного монополя не обнаружено. Теория раздувания помогает решить некоторые из этих проблем, но, как мы отметили раньше, она же рождает новые трудности.

Одной из главных причин изучения очень ранних этапов развития Вселенной является желание как можно больше узнать об объединении. С помощью таких исследований удаётся разобраться в проблемах, связанных с объединением.

Глава 7 КОСМОЛОГИЧЕСКИЙ ПАРАДОКС

Теория Большого взрыва существует уже около 40 лет, и большинство астрономов считает её справедливой. Однако было бы ошибкой думать, что в ней нет никаких неясностей. Эта теория не даёт ответов на ряд важных вопросов, а некоторые её выводы не согласуются с наблюдениями.

Единая теория должна объяснять строение и эволюцию Вселенной, и потому нам стоит разобрать её недостатки. Во-первых, теорию Большого взрыва нельзя назвать простой, она состоит из нескольких теорий, или, по крайней мере, имеет множество вариантов. Согласно этой теории Вселенная расширяется, но теория не объясняет, что вызвало расширение или что в конце концов произойдёт со Вселенной. Впрочем, она даёт нам косвенные свидетельства того, что Вселенная началась со взрыва огромной силы и что в зависимости от количества вещества расширение может либо продолжаться бесконечно, либо прекратиться, и Вселенная снова сожмётся в точку.

Что будет со Вселенной дальше, неизвестно, но есть много свидетельств того, что она находится в некоем пограничном положении. Другими словами, Вселенная, очевидно, находится на грани открытого (т.е. постоянного расширения) и закрытого (т.е. расширения с последующим сжатием – коллапсом) состояний. Чтобы определить, по какому пути она пойдёт, нужно решить так называемую проблему кривизны; дело в том, что наша Вселенная скорее плоская, чем искривлённая. Большинство астрономов считает, что это обстоятельство должно получить какое-то объяснение, но до сих пор оно не найдено.

Другая проблема связана с однородностью пространства. Если смотреть с Земли, то Вселенная (в крупном масштабе) кажется одинаковой во всех направлениях. Плотность распределения галактик и их тип в целом одинаковы. Более того, одинаковы во всех направлениях и характеристики реликтового излучения. Однако, если задуматься, возникает вопрос, почему это так. Если предположить, что Вселенная родилась, скажем, 18 миллиардов лет назад, то галактики, которые находятся сейчас на расстоянии 20 миллиардов световых лет, никак не могли «вступить в контакт» друг с другом, так как иначе сигнал должен был бы двигаться со скоростью, большей световой, а это, как мы знаем, невозможно. Иначе говоря, Большой взрыв был настолько мощным, что некоторые районы ранней Вселенной оказались полностью отрезанными друг от друга и по мере расширения так и остались изолированными.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*