KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иосиф Шкловский, "Звезды: их рождение, жизнь и смерть" бесплатно, без регистрации.
Перейти на страницу:

 


Рис. 7.1: Схема, поясняющая конвекцию газа в недрах звезды.  

На рис. 7.1 приведена схема, иллюстрирующая нашу задачу с объемом газа. Значение характеристик объема и окружающей среды в первоначальном состоянии обозначим индексом «1», а в конечном — индексом «2». Характеристики объема отметим звездочкой. Так как первоначальные характеристики объема совершенно не отличались от характеристик окружающей среды, то будут иметь место равенства

(7.14)

где и P обозначают плотность и давление. После того как объем переместился вверх (или, другими словами, «претерпел возмущение»), причем его внутреннее давление уравновешено давлением окружающей среды, плотность его должна отличаться от плотности указанной среды. Это объясняется тем, что в процессе подъема и расширения нашего объема его плотность менялась по особому, так называемому «адиабатическому» закону. В этом случае будем иметь

(7.15)

где = cp/c3 — отношение удельных теплоемкостей при постоянном давлении и постоянном объеме. Для идеального газа, из которого состоит вещество «нормальных» звезд, cp/c3 = 5/3. А теперь посмотрим, что у нас получилось. После перемещения объема вверх действующее на него давление окружающей среды по-прежнему равно внутреннему, между тем гравитационная сила, действующая на единицу объема, стала другой, так как изменилась плотность. Теперь ясно, что если эта плотность окажется больше плотности окружающей среды, объем начнет опускаться вниз, пока не займет своего первоначального положения. Если же эта плотность в процессе адиабатического расширения стала меньше плотности окружающей среды, объем будет продолжать свое движение вверх, «всплывая» под действием силы Архимеда. В первом случае состояние среды будет устойчивым. Это означает, что любое, случайно возникшее движение газа в среде будет как бы «подавляться» и элемент вещества, который начал было перемещаться, сразу же вернется на свое прежнее место. Во втором же случае состояние среды будет неустойчивым. Малейшее возмущение (от которого никогда нельзя «застраховаться») будет все больше и больше усиливаться. В среде возникнут беспорядочные движения газа «вверх» и «вниз». Движущиеся массы газа будут переносить с собой содержащуюся в них тепловую энергию. Наступит состояние конвекции. Конвекция очень часто наблюдается в земных условиях (вспомним, например, как греется вода в чайнике, поставленном на плиту). Перенос энергии путем конвекции качественно отличается от обсуждавшегося в предыдущем параграфе переноса энергии путем лучеиспускания. В последнем случае, как мы видели, количество переносимой в потоке излучения энергии ограничено непрозрачностью звездного вещества. Например, если непрозрачность очень велика, то при данном перепаде температуры количество переносимой энергии будет сколь угодно мало. Не так обстоит дело с переносом энергии путем конвекции. Из самой сущности этого механизма следует, что количество переносимой конвекцией энергии никакими свойствами среды не ограничено.

В недрах звезд, как правило, перенос энергии осуществляется посредством лучеиспускания. Это объясняется устойчивостью среды по отношению к возмущениям ее «неподвижности» (см. выше). Но есть в недрах ряда звезд такие слои и даже целые большие области, где условие устойчивости, которое было получено выше, не выполняется. В этих случаях основная часть энергии переносится путем конвекции. Обычно это бывает тогда, когда перенос энергии путем лучеиспускания по каким-либо причинам оказывается ограниченным. Это может произойти, например» при слишком большой непрозрачности.

Выше было получено основное соотношение «масса — светимость» из предположения, что перенос энергии в звездах осуществляется только путем лучеиспускания. Возникает вопрос: если в звезде имеет место также перенос энергии путем конвекции, не нарушится ли эта зависимость? Оказывается, нет! Дело в том, что «полностью конвективных звезд», т. е. таких звезд, у которых повсеместно, от центра до поверхности, перенос энергии осуществлялся бы только путем конвекции, в природе не существует. У реальных звезд имеются либо лишь более или менее тонкие слои, либо большие области в центре, где конвекция играет доминирующую роль. Но достаточно иметь хотя бы даже один слой внутри звезды, где бы перенос энергии осуществлялся лучеиспусканием, чтобы его непрозрачность самым радикальным образом отразилась бы на «пропускной способности» звезды по отношению к выделяющейся в ее недрах энергии. Однако наличие конвективных областей в недрах звезд, конечно, изменит численное значение коэффициентов в формуле (7.13). Это обстоятельство, в частности, является одной из причин, почему вычисленная нами по этой формуле светимость Солнца почти в пять раз превышает наблюдаемую.

Итак, по причине описанной выше специфической неустойчивости, в конвективных слоях звезд происходят крупномасштабные движения газа. Более нагретые массы газа подымаются снизу вверх, в то время как более холодные опускаются. Происходит интенсивный процесс перемешивания вещества. Расчеты показывают, однако, что разница в температуре движущихся элементов газа и окружающей среды совершенно ничтожна, всего лишь около 1 К — и это при температуре вещества недр порядка десяти миллионов кельвинов! Это объясняется тем, что сама конвекция стремится выравнивать температуру слоев. Средняя скорость поднимающихся и опускающихся газовых масс также незначительна — всего лишь порядка нескольких десятков метров в секунду. Полезно сравнить эту скорость с тепловыми скоростями ионизованных атомов водорода в недрах звезд, которые порядка нескольких сотен километров в секунду. Так как скорость движения газов, участвующих в конвекции, в десятки тысяч раз меньше тепловых скоростей частиц звездного вещества, то давление, вызываемое конвективными потоками, почти в миллиард раз меньше обычного газового давления. Это означает, что конвекция совершенно не влияет на гидростатическое равновесие вещества звездных недр, определяемое равенством сил газового давления и гравитации.

Не следует представлять себе конвекцию как некий упорядоченный процесс, где области подъема газа регулярно чередуются с областями его опускания. Характер конвективного движения не «ламинарный», а «турбулентный»; т. е. носит крайне хаотический, беспорядочно меняющийся во времени и пространстве характер. Хаотический характер движения газовых масс приводит к полному перемешиванию вещества. Это означает, что химический состав области звезды, охваченной конвективными движениями, должен быть однородным. Последнее обстоятельство имеет весьма большое значение для многих проблем звездной эволюции. Например, если в результате ядерных реакций в самой горячей (центральной) части конвективной зоны химический состав изменился (например, стало меньше водорода, часть которого превратилась в гелий), то за короткое время это изменение распространится на всю конвективную зону. Таким образом, в «зону ядерных реакций» — центральную область звезды — непрерывно может поступать «свежее» ядерное горячее, что имеет конечно, решающее значение для эволюции звезды[ 22 ]. В то же время вполне могут быть и такие ситуации, когда в центральных, самых горячих областях звезды конвекции нет, что приводит в процессе эволюции к радикальному изменению химического состава этих областей. Об этом более подробно будет идти речь в § 12.

Глава 8 Ядерные источники энергии излучения звезд

В § 3 мы уже говорили о том, что источниками энергии Солнца и звезд, обеспечивающими их светимость в течение гигантских «космогонических» промежутков времени, исчисляемых для звезд не слишком большой массы миллиардами лет, являются термоядерные реакции. Сейчас мы остановимся на этом важном вопросе более подробно.

Основы теории внутреннего строения звезд были заложены Эддингтоном еще тогда, когда источники их энергии были не известны. Мы уже знаем, что ряд важных результатов, касающихся условия равновесия звезд, температуры и давления в их недрах и зависимости светимости от массы, химического состава (определяющего средний молекулярный вес) и непрозрачности вещества, мог быть получен и без знания природы источников звездной энергии. Тем не менее понимание сущности источников энергии совершенно необходимо для объяснения длительности существования звезд в почти неизменном состоянии. Еще более важно значение природы источников звездной энергии для проблемы эволюции звезд, т. е. закономерного изменения их основных характеристик (светимости, радиуса) с течением времени. Только после того как стала ясной природа источников звездной энергии, оказалось возможным понять диаграмму Герцшпрунга — Рессела,— основную закономерность звездной астрономии.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*