KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Шустов, "Астероидно-кометная опасность: вчера, сегодня, завтра" бесплатно, без регистрации.
Перейти на страницу:

Рисунки 4.18 и 4.19 показывают очень много важных особенностей структуры внешней части Солнечной системы. Во-первых, облако Оорта является естественным результатом длительной динамической эволюции объектов, выбрасываемых из планетной области. В результате действия звездных и галактических возмущений орбиты большинства объектов расположены в настоящее время далеко от планетной области, и лишь некоторые из них могут переходить на почти параболические орбиты. Наряду с внешней частью облака Оорта (a > 104 а.е.), откуда в настоящее время наблюдается поток «новых» комет, существует и внутренняя часть облака Оорта (103 < a < 104 а.е.), из которой кометы могут напрямую вбрасываться в околоземное пространство только при редких проникновениях звезд в эту область [Hills, 1981]. Во внешней части облака Оорта орбиты имеют изотропное распределение, а при a < 8 103 а.е. заметно преобладание прямых орбит.


Рис. 4.18. Распределение больших полуосей и перигелийных расстояний для кометных объектов через 4,5 млрд лет динамической эволюции под действием планетных, звездных и галактических возмущений (из работы [Emel’yanenko et al., 2007])


Рис. 4.19. Распределение больших полуосей и наклонов орбит для кометных объектов через 4,5 млрд лет динамической эволюции под действием планетных, звездных и галактических возмущений (из работы [Emel’yanenko et al., 2007])


Некоторые объекты, перигелии орбит которых расположены достаточно близко к планетной области, проникают из облака Оорта в область a < 103 а.е., образуя класс транснептуновых объектов, движущихся по орбитам с большими эксцентриситетами. Хотя часть объектов могла остаться в транснептуновой области на орбитах с большими эксцентриситетами с начальных этапов формирования Солнечной системы, резкой границы между облаком Оорта и транснептуновой зоной не существует. Семейство транснептуновых объектов, движущихся по орбитам с большими эксцентриситетами, является комбинацией объектов, находящихся здесь на протяжении времени существования Солнечной системы, и объектов, посещавших облако Оорта в течение своей динамической истории.

Объекты облака Оорта могут попадать и в область внешних планет, пополняя класс кентавров. Детальный анализ показал, что это может происходить как непосредственно, путем прямого изменения перигелийных расстояний под действием звездных и галактических возмущений, так и в результате длительной эволюции под действием планетных возмущений через стадию транснептуновых объектов с большими эксцентриситетами орбит. В дальнейшем большинство кентавров выбрасываются планетами из Солнечной системы, а некоторые могут переходить на короткопериодические орбиты. В последнем случае они в основном образуют класс комет семейства Юпитера, хотя относительно малая их доля может захватываться и на орбиты комет галлеевского типа. Таким образом, давно известный диффузионный механизм происхождения комет галлеевского типа из потока почти параболических комет с перигелиями, расположенными внутри орбиты Юпитера, не является единственным.

Сопоставление результатов моделирования с характеристиками потока «новых» комет позволяет оценить число кометных объектов различных классов, происхождение которых связано с облаком Оорта. Если полагать, что на расстоянии от Солнца q < 5 а.е. в год проходит перигелий приблизительно 15 «новых» комет [Bailey and Stagg, 1998; Fernandez and Gallardo, 1999; Weissman and Lowry, 2001], то в современную эпоху в облаке Оорта (a > 103 а.е.) должно находиться ∼ 1012 соответствующих кометных объектов, причем приблизительно половина из них расположена во внешней части (a > 104 а.е.).

В заключение этого раздела остановимся отдельно на проблеме числа комет галлеевского типа, важной при рассмотрении проблемы астероиднокометной опасности. Подробное изучение динамической эволюции комет из почти параболического потока в семейство комет галлеевского типа показало [Emel’yanenko and Bailey, 1998; Levison et al., 2002], что вероятность захвата комет галлеевского типа с перигелийными расстояниями q < 1,5 а.е. из потока «новых» комет с 0 < q < 4 а.е. равна 0,013. Тогда число объектов, захватываемых на орбиты галлеевского типа из облака Оорта, значительно превышает число наблюдаемых комет этого типа. Действительно, среднее число комет галлеевского типа NHT в любой момент времени удовлетворяет соотношению NHT = νHT LHT, где νHT — число комет, захватываемых на орбиты галлеевского типа в единицу времени, LHT — среднее время жизни комет галлеевского типа. Используем опять оценку, что в окрестности Земли приблизительно 3 «новые» кометы приходят в интервале перигелийных расстояний 1 а.е. Тогда, если ограничиться только потоком почти параболических комет с 0 < q < 4 а.е., νHT = 3 4 0,013 = 0,156 комет в год. Вычисления показывают, что среднее время динамической жизни комет галлеевского типа с q < 1,5 а.е. составляет 3 105 лет. Отсюда следует, что NHT ≈ 47 000. В настоящее время обнаружено лишь около 30 комет галлеевского типа с q < 1,5 а.е. Это противоречие может быть преодолено только на основе предположения об очень коротком (менее 200 оборотов вокруг Солнца) времени физической жизни комет галлеевского типа. Но тогда возникает вопрос о количестве и размерах тех тел, которые представляют собой продукты дезинтеграции многочисленных комет галлеевского типа. Решение этого вопроса является очень важным в проблеме астероидно-кометной опасности.

4.6. Кометы, «царапающие Солнце»

Вокруг сияющего света,
Что вечно льет источник дня,
Кружатся легкие кометы,
Как мотыльки вокруг огня.
Несясь среди планетной сферы,
Они недолго в ней живут,
Семьи небесной эфемеры,
Они свиданья с Солнцем ждут.

Н. Морозов

Первой обнаруженной кометой, прошедшей близко от Солнца, была так называемая Великая комета 1680 года (C/1680 V1) — первая комета, открытая с помощью телескопа немецким астрономом Готфридом Кирхом. Ее орбита, рассчитанная с помощью теории тяготения Ньютона, оказалась проходящей очень близко к Солнцу. Следующей кометой, «царапающей Солнце» (Sun-grazing comet), стала комета С/1843 D1 — Великая мартовская комета. Она была обнаружена в начале февраля 1843 г. и была видна до конца апреля того же года. В 1880 г. возле Солнца появилась комета C/188 °C1 — Великая южная комета. А в 1882 г. сразу несколько комет наблюдались около Солнца с интервалом в несколько месяцев. Открытие кометы X/1882 K1 — Кометы затмения 1882 года — стало полной неожиданностью для астрономов. 17 мая 1882 г. во время солнечного затмения наблюдатели в Египте заметили яркую полоску света рядом с Солнцем. По случайному стечению обстоятельств затмение совпало по времени с прохождением кометой своего перигелия. Только благодаря этому она и стала известной, поскольку комета является неяркой и при других условиях не видна на фоне Солнца. Иногда комету X/1882 K1 еще называют кометой Тевфика, в честь правителя Египта того времени.


Рис. 4.20. Великая сентябрьская комета 1882 года [Клейн, 1898]


Великая сентябрьская комета 1882 года — C/1882 R1 (рис. 4.20) — была открыта независимо сразу несколькими людьми, так как при своем появлении в начале сентября того года, буквально за считанные дни до прохождения перигелия, она была заметна даже без специального оборудования. Комета быстро набирала яркость и вскоре (16–17 сентября) стала видимой при свете дня и даже просвечивала сквозь легкие облака. После прохождения перигелия она оставалась яркой в течение нескольких недель. В октябре ее ядро, похоже, разделилось сначала на два, а потом на 5 фрагментов. Комета С/1882 R1 предположительно является частью кометы X/1106 C1, которую наблюдали Аристотель и Эфор в 371 г. до н. э. Кометы C/1843 D1 и C/1882 R1 были наиболее яркими в XIX в. Немецкий астроном Генрих Крейц в своих работах (1888, 1891, 1901 гг.) показал, что кометы 1843, 1880, 1882 годов являются частями некогда одной большой кометы. Эти кометы стали называть кометами семейства Крейца. В его работах было показано, что комета С/1680 V1 не принадлежит к семейству комет Крейца. В XX в. было открыто еще несколько околосолнечных комет — C/1945 X1 (комета дю Туа), C/1963 R1 (комета Перейры), C/1965 S1 (комета Икея — Секи), C/1970 K1 (комета Уайта — Ортиза — Болелли), которые также принадлежат семейству Крейца.

До недавнего времени была возможна ситуация, когда даже яркая комета Крейца могла пройти возле Солнца незамеченной, если ее перигелий приходился на промежуток с мая по август. В это время года для наблюдателя с Земли Солнце будет закрывать почти всю траекторию кометы, и та может быть видимой только близко от Солнца и только при условии, что будет очень яркой. После 1970 г. яркие кометы Крейца более не появлялись. Однако в течение 1980-х годов посредством двух спутников, исследующих Солнце, были неожиданно открыты несколько новых членов семейства: 10 из них открыты спутником P78–1 (Solwind) в 1979–1984 гг., еще 10 — спутником SMM (Solar Maximum Mission) в 1987–1989 гг.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*