KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории" бесплатно, без регистрации.
Перейти на страницу:

Допустим, что электронные волны обладают теми же свойствами, что и все другие волны, например, они могут сталкиваться с препятствиями и образовывать вторичные волны. Однако в рамках вероятностного описания из этого не следует, что сам электрон распадается на части. Это означает лишь, что имеются области, в которых электрон может появиться с ненулевой вероятностью. На практике это означает, что если мы будем снова и снова повторять совершенно одинаковым образом какой-либо эксперимент с электроном, касающийся, например, измерения его положения, мы не будем всегда получать одинаковый результат. Повторяющиеся эксперименты дадут набор различных результатов, в которых частота появления электрона в заданном месте будет функцией плотности вероятности электронной волны. Если функция плотности вероятности для волны (или, точнее, квадрат плотности вероятности) для точки A в два раза больше, чем для точки B, то при многократном повторении опыта мы увидим, что электрон будет обнаруживаться в точке A в два раза чаще, чем в точке B. Точный результат эксперимента не может быть предсказан; лучшее, что можно сделать — предсказать вероятность данного возможного исхода.

Однако если математическое выражение для функции плотности вероятности известно точно, то даже при такой неопределённости исходов вероятностный прогноз может быть проверен путём многократного повторения эксперимента, что позволяет экспериментально определить вероятность того или иного конкретного результата. Всего через несколько месяцев после появления гипотезы де Бройля Шрёдингер сделал важный шаг в этом направлении, предложив уравнение, которое определяет форму и эволюцию таких вероятностных волн, или, как они теперь называются, волновых функций. Вскоре уравнение Шрёдингера и вероятностная интерпретация были использованы для получения фантастически точных предсказаний. Таким образом, к 1927 г. классическая наивность была утрачена. Ушли те дни, когда Вселенная представлялась работавшим как часы механизмом, объекты которого, приведённые в движение в какой-то момент в прошлом, покорно следовали к неизбежному, единственным образом определяемому пункту назначения. Согласно квантовой механике Вселенная развивается в соответствии со строгими и точными математическими законами, но эти законы определяют только вероятность того, что может наступить то или иное конкретное будущее, и ничего не говорят о том, какое будущее наступит в действительности.

Многие сочтут этот вывод обескураживающим или даже совершенно неприемлемым. Одним из таких людей был Эйнштейн. В одном из наиболее известных в истории физики высказываний он предостерегал сторонников квантовой механики: «Бог не играет в кости со Вселенной». Он считал, что вероятность появляется в фундаментальной физике по той же причине, по которой она появляется в игре в рулетку: вследствие существенной неполноты нашего знания. С точки зрения Эйнштейна, во Вселенной нет места для будущего, точное содержание которого включает элементы вероятности. Физики должны предсказывать, как будет развиваться Вселенная, а не определять вероятность того, что события могут пойти каким-то путём. Но эксперимент за экспериментом (некоторые из наиболее впечатляющих были выполнены уже после его смерти) убедительно подтверждали, что Эйнштейн был не прав. Как заметил однажды по этому поводу британский физик-теоретик Стивен Хокинг: «Заблуждался Эйнштейн, а не квантовая теория».{19}

Тем не менее, споры о том, что же в действительности представляет собой квантовая механика, не утихают. Все согласны в том, как использовать уравнения квантовой механики для получения точных предсказаний. Нет согласия в вопросах о том, что в действительности представляют собой волновые функции, каким образом частица «выбирает», какому из многих вариантов будущего ей следовать. Нет согласия даже в вопросе о том, действительно ли она выбирает или вместо этого разделяется, подобно разветвляющемуся руслу реки, и живёт во всех возможных будущих, в вечно расширяющемся мире параллельных вселенных. Эти интерпретации сами по себе заслуживают отдельной книги, и, в действительности, есть немало превосходных книг, пропагандирующих тот или иной взгляд на квантовую теорию. Но совершенно определённым кажется тот факт, что независимо от интерпретации квантовой механики, она неопровержимо доказывает, что Вселенная основана на принципах, которые являются неестественными с точки зрения повседневного опыта.

Общий урок, который дают теория относительности и квантовая механика, состоит в том, что в ходе глубоких исследований основ мироздания можно столкнуться с фактами, которые очень сильно отличаются от наших ожиданий. Отвага при постановке новых вопросов может потребовать непредвиденной гибкости, когда нам придётся принимать неожиданные точки зрения.

Точка зрения Фейнмана

Ричард Фейнман был одним из величайших физиков-теоретиков со времён Эйнштейна. Он полностью принял вероятностную интерпретацию квантовой механики, но после Второй мировой войны предложил новый взгляд на эту теорию. С позиций численных предсказаний точка зрения Фейнмана полностью согласуется с тем, что было известно ранее. Но её формулировка существенно отличается от общепринятой. Рассмотрим её в контексте экспериментов с электронами и двумя щелями.

Проблема с интерпретацией рис. 4.8 возникает потому, что в нашем представлении электрон проходит либо через левую щель, либо через правую, и поэтому мы рассчитываем увидеть комбинацию картин рис. 4.4 и 4.5, показанную на рис. 4.6. Электрону, проходящему через правую щель, должно быть всё равно, существует ли левая щель, и наоборот. Но каким-то образом он её чувствует. Получаемая интерференционная картина требует взаимодействия и сообщения между чем-то, чувствительным к обеим щелям, даже если электроны выстреливаются поодиночке. Шрёдингер, де Бройль и Борн объясняли этот феномен, приписывая каждому электрону волновую функцию. Подобно волнам на поверхности воды, показанным на рис. 4.7, волны функции плотности вероятности электрона «видят» обе щели и испытывают своего рода интерференцию при наложении. На тех участках, где вероятностная волна усиливается при наложении, подобно участкам значительного усиления колебаний на рис. 4.7, обнаружение электрона вероятно, а там, где вероятностная волна ослабляется при наложении, подобно местам с минимальной амплитудой или отсутствием колебаний на рис. 4.7, обнаружение электрона маловероятно или невероятно. Электроны сталкиваются с фосфоресцирующим экраном один за другим, распределённые в соответствии с функцией плотности вероятности и, в конечном итоге, образуют интерференционную картину, схожую с той, которая показана на рис. 4.8.

Фейнман выбрал другой подход. Он усомнился в основном классическом предположении, согласно которому каждый электрон проходит либо через левую щель, либо через правую. На первый взгляд это предположение настолько фундаментально, что сомневаться в нём нелепо. В конце концов, разве вы не можете заглянуть в область, расположенную между щелями и фосфоресцирующим экраном, и посмотреть, сквозь какую щель проходит каждый электрон? Да, вы можете. Но тем самым вы измените эксперимент. Чтобы увидеть электрон, вы должны сделать с ним что-нибудь — например, осветить его, т. е. столкнуть с ним фотон. В повседневных масштабах фотон действует как исчезающе малый зонд, который отскакивает от деревьев, картин и людей, не оказывая практически никакого влияния на движение этих сравнительно больших материальных тел. Но электрон — это ничтожно малая частица материи. Независимо от того, насколько осторожно вы будете определять щель, через которую он прошёл, отражающиеся от электрона фотоны неизбежно повлияют на его последующее движение. А это изменение движения изменит результат нашего эксперимента. Если ваше вмешательство будет достаточно сильным для того, чтобы вы смогли определить щель, через которую прошёл электрон, результат эксперимента изменится, и вместо картины, показанной на рис. 4.8, вы получите картину, подобную той, которая изображена на рис. 4.6! Квантовый мир гарантирует, что как только вы установили, через какую щель, правую или левую, прошёл каждый электрон, интерференция между этими двумя щелями исчезнет.

Таким образом, Фейнман укрепился в своих сомнениях: хотя повседневный опыт говорит о том, что электрон должен проходить через одну из двух щелей, к концу 1920-х гг. физики поняли, что любая попытка проверить это якобы фундаментальное свойство неизбежно приведёт к искажению результатов эксперимента.

Фейнман провозгласил, что каждый электрон, который проходит через преграду и попадает на фосфоресцирующий экран, проходит через обе щели. Это звучит дико, но не торопитесь возмущаться, вас ждут ещё более сумасшедшие заявления. Фейнман высказал утверждение, что на отрезке от источника до некоторой точки на фосфоресцирующем экране каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно; некоторые из этих траекторий показаны на рис. 4.10.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*