Вольдемар Смилга - Очевидное? Нет, еще неизведанное…
Рассмотрим два положения Земли и Юпитера. В этих двух положениях и проведем измерение интервалов между двумя затмениями. Заметим, что в положении 1 расстояние между Землей и Юпитером уменьшается со временем, а в положении 2 растет.
Учтем теперь, что скорость света конечна.
Пусть Юпитер, спутник и Земля находятся в положении 1. Пусть спутник зашел за Юпитер в момент времени t1. В это мгновение на Земле мы получим световые волны, которые были посланы с поверхности спутника в какой-то предыдущий момент. Иными словами, мы увидим изображение спутника в том месте, где его уже нет.
Точно так же мы ничего не увидим, если попытаемся найти быстро летящий самолет в той точке, откуда доносится звук мотора. Пока звук будет до нас добираться, самолет улетит дальше.
Кажется, первая совершенно точная аналогия.Изображение спутника, скрывающегося за Юпитером, мы получим не в момент t1, а спустя некоторое время Δt1(r1), которое нужно затратить свету, чтобы пробежать расстояние r1 от спутника Юпитера до Земли. Оно будет равно Δt1(r1) = r1/c, где с — скорость света.
Пожалуй, и в этом случае проще разобраться в сути дела, используя формулы.Земной наблюдатель по своим часам отметит, что затмение спутника Юпитера началось в момент tт = t1 + r1/c[37].
Когда произойдет второе затмение (а оно наступит примерно через двое суток), все повторится. И мы занесем в журнал наблюдений, что затмение началось в момент tт1 = t11 + r11/c, — где r11 — расстояние между Землей и Юпитером в момент начала второго затмения.
Интервал времени между началами двух затмений = Δt1 т = (t11 – t1) + 1/c(r11 – r1).
Но, как помните, в положении 1 расстояние между Землей и Юпитером все время уменьшается. Следовательно, r11 < r1, и вторая скобка отрицательная.
Правда, скорость света с очень велика, поэтому все второе слагаемое очень мало по сравнению с первым членом. Но все же измеряется несколько меньший интервал времени, чем действительный период между двумя затмениями.
Все сказанное можно повторить по отношению к измерениям, проведенным в положении 2, и тогда получим:
Δt2 т = (t21 – t2) + 1/c(r21 – r2).
Есть, однако, существенное различие. Когда Земля и Юпитер находятся в положении 2, расстояние между ними все время растет, то есть r21 > r2.
Значит, вторая скобка положительна, и интервал Δt2 т несколько больше действительного периода между затмениями. (Само собой разумеется, что Δt2 т > Δt1 т.)
Зная движение Земли и Юпитера, можно определить разность расстояний между ними в любые моменты времени. И, имея эти данные, путем несложных вычислений легко найти скорость света.
Вычисления самого Ремера были довольно грубы: по его данным, скорость света равна приблизительно 215 тысячам километров в секунду[38].
Наш разговор о методе Ремера чуть менее схематичен, чем принято обычно. Но и мы обратили внимание только на одно затруднение — противоречивость кажущегося постоянства времени одного оборота спутника и предсказаний времени затмений на длительные сроки, — забыв о многих не менее тяжелых препятствиях на пути Ремера. Мало было связать руководящую идею конечности скорости света с тем, что предсказания затмений на длительные сроки были ошибочны. Требовалось еще обработать очень сложный и запутанный экспериментальный материал, материал настолько противоречивый, что Кассини отказался от теории Ремера.
Опять назидательные поучения!Когда работа закончена, когда не остается сомнений в ее справедливости, все представляется очень простым. Это впечатление бывает особенно четким при поверхностном знакомстве. Но стоит присмотреться внимательней, как видишь, сколько было поисков и сомнений у исследователей, какой тяжелый путь скрыт за этой мнимой простотой. Избитый афоризм «гениальное всегда просто» мало поэтому соответствует истине. Более точно было бы сказать: «Простым кажется все, что уже ясно понято другими». Причем простота видна тем разительней, чем меньше мы сами понимаем, о чем идет речь.
Перейдем ко второй работе, сыгравшей в теории света и эфира исключительную роль.
Интересно, что в какой-то степени она была сделана случайно.
С тех пор как появилась система Коперника, ее сторонники пытались доказать вращение Земли, обнаружив кажущееся годичное движение неподвижных звезд — параллактическое смещение.
Очень издалека начинается рассказ об аберрации света — эффекте, замечательном как по своей физической сущности, так и своей историей.Идея наблюдений очевидна.
Когда Земля находится в положении Т′, звезда представляется нам в точке S′. Спустя полгода мы из Т″ увидим ее в точке S″. И за год она совершает движение S′S″S′[39].
Иными словами, видимое движение звезды проявляется в том, что в разные времена года надо направлять телескоп под различными углами к земной поверхности. А это на нашем языке и означает в различные точки неба.
Так как расстояние от Земли до звезд во много раз превышает размеры земной орбиты, годичный параллакс ничтожно мал. Поэтому астрономы XVI столетия, с их несовершенными приборами, заметить его не могли. Ведь наибольший параллакс у самой близкой к нам звезды Proxima (Ближайшая) Центавра равен 0,75″! Под таким углом виден человеческий волос на расстоянии 18 метров![40]
Любопытные сведения.Известный датский астроном Тихо де Браге тщетно пытался обнаружить годичный параллакс Полярной звезды и после неудачных опытов в конце концов стал непримиримым противником учения Коперника.
В XVII столетии точность астрономических наблюдений значительно возрастает и действительно удается наблюдать смещение звезд. Решили, что обнаружен годичный параллакс и получено еще одно подтверждение идеи Коперника.
Но вот Брадлей, изучая годичные смещения многих звезд, приходит к выводу, что это отнюдь не параллактическое смещение. Наблюдаемые движения совершенно не совпадали с теоретическими представлениями.
Не было просто ничего похожего.
Во-первых, абсолютно все звезды, лежащие в плоскости эклиптики, в течение года дважды пробегали одну и ту же дугу, равную 40,9 секунды.
Далее. Все звезды, не лежащие в плоскости эклиптики, описывали на небе эллипсы, большая ось которых также равнялась тем же 40,9 секунды.
Если допустить, что эти движения и есть параллактические смещения, пришлось бы сделать невероятное предположение, что все звезды удалены от Земли на одно и то же расстояние. Впрочем, такой отчаянный шаг тоже не мог спасти положение.
В открытом Брадлеем движении наблюдались такие закономерности, которые уже совсем нельзя было объяснить, считая, что мы видим параллактическое смещение.
Действительно, если видимое движение звезд вызвано параллактическим смещением, то при тех двух положениях Земли, когда Солнце, Земля и звезды находятся на одной прямой, звезда должна наблюдаться в одной и той же точке небосклона. А Брадлей установил, что как раз при положении Земли в этих точках звезда максимально отклоняется от своего среднего положения на небосводе.
Естественно, возник вопрос: какова же причина наблюдаемого движения? Брадлей нашел совершенно неожиданное и изящное решение задачи.
Пусть скорость света конечна, говорит Брадлей. Свет — это поток летящих от звезды на Землю мельчайших частиц — корпускул (Брадлей твердо стоял за корпускулярную теорию света).
Тогда, поскольку Земля двигается по своей орбите со значительной скоростью, наблюдаемая картина звездного неба должна отличаться от реальной.
Пояснить идею Брадлея очень просто.
Предположим, что в какой-то обсерватории проводятся наблюдения и телескоп направлен точно в зенит вертикально к поверхности Земли. Чтобы сделать наш пример «более реальным», вооружим обсерваторию телескопом-рефлектором, в котором верхнее отверстие трубы телескопа ничем не закрыто. В какой-то момент может случиться так, что начнется совершенно отвесный дождь. Если телескоп не убрать, естественно, все зеркало, расположенное внизу трубы, будет равномерно залито дождем. Капли дождя, двигаясь вдоль оптической оси трубы сверху вниз, попадут строго в центр зеркала.