KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Марк Волынский - Необыкновенная жизнь обыкновенной капли

Марк Волынский - Необыкновенная жизнь обыкновенной капли

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Марк Волынский - Необыкновенная жизнь обыкновенной капли". Жанр: Физика издательство -, год -.
Перейти на страницу:

Конденсация — переход вещества из одной фазы (па­рообразной) в другую (жидкую) в виде мелких капель; происходит, как правило, на ядрах (центрах) конденса­ции — пылинках, заряженных частицах и т. д.


Лекарственные капли. Укажем лишь самые «по­пулярные»: валериановые, капли Датского короля от кашля (употреблялись в недавнем прошлом), капли Вотчала, Зеленина, ландышевые.


Лакокрасочные покрытия. Раствор краски или дру­гого вещества распылив ают в виде мелких капелек (аэрозоля) с помощью пневмопистолета (тип пневмати­ческой форсунки), нанося слой покрытия на различные поверхности.


Медианный диаметр спектра распыливания — диа­метр капель в спектре с максимальной плотностью рас­пределения по размерам.


Милликена классические опыты по измерению массы и заряда электрона с помощью капель (счастливая на­ходка Дж. Таусенда, измерениям которого, однако, не хватило точности) в науке стали образцом виртуозной техники. Американский ученый завершил то, что на про­тяжении почти 16 лет (1897—1912) пытались сделать другие исследователи. Капли в его опытах падали через магнитное поле внутри камеры Вильсона, и их скорость определялась по формуле Стокса с учетом постоянной электрической силы. Были поставлены тончайшие пред­варительные эксперименты по испарению: капля непо­движно взвешивалась в поле, ее стремление всплыть из-за потери массы компенсировалось электрической силой — так находилась скорость испарения, нужная для точного расчета движения частиц. Длительные наб-, людения обнаружили новый эффект — скачки скорости, что могло происходить лишь в одном случае: если меняющийся заряд падающей капли принимал значения, кратные какому-то минимальному. Это минимальное, неделимое и оказалось зарядом электрона. Так опыт подтвердил «зернистое» строение зарядов, а капелька воды принесла каплю истины — константу масштабов современного естествознания. Заряд электрона в опытах Милликена оказался равным (4,77± 0,005) 10-10 элек­тростатической единицы. Незначительный «довесок» в скобках «дорого стоил», он означал высочайший класс эксперимента и точность результатов, полученных ценой подвижничества и бесконечного стремления к достоверности.


Молоко, которое нам кажется единой сплошной жидкостью, является эмульсией (смесью жидкостей) и состоит из белково-жировых шариков, капель размером порядка 1 микрометра.


Молоко порошковое — продукт распыливания моло­ка в условиях вакуума; после испарения жидкости остается порошок, представляющий собой белково-жи­ровые шарики диаметром порядка 10 микрометров.


Невесомость капли. Известен классический опыт бельгийского физика и анатома Жозефа Плато по неве­сомости капли. В прозрачный сосуд с водным раствором спирта вводят каплю не смешивающегося с ним масла. Концентрацию раствора подбирают так, чтобы уравнять плотности обеих жидкостей. Тяжесть капли будет урав­новешена архимедовой силой, и она станет невесомой. Из игры трех сил на капле: веса, гидростатического давления (их равнодействующей архимедовой силы) и поверхностного натяжения — выбывают две первые. Капля любого размера повисает в жидкости правиль­ным шаром под действием силы поверхностного натяже­ния, стремящегося придать минимальную поверхность капле при заданном объеме (геометрическое свойство шара). 

Сейчас возникла целая область гидродинамики неве­сомости, важная для спутников и космических аппара­тов, на борту которых всегда имеются жидкости раз­личного рода и назначения.


Неустойчивость жидких струй — явление нарастания амплитуды случайных, бесконечно малых начальных колебаний координат поверхности струи (поверхности тангенциального разрыва скоростей струи жидкости и окружающей среды).


Неустойчивость капли — явление деформации капли обтекающим потоком: сначала капля приобретает фор­му диска, переходит затем в тороидальное кольцо, ко­торое неустойчиво к начальным возмущениям своей по­верхности (см. Неустойчивость жидких струй).


Облака — скопление продуктов конденсации водяно­го пара — капель или кристалликов льда. Капли обра­зуются и растут на ядрах конденсации, затем увеличиваются при слиянии — коагуляции. В условиях отрица­тельных температур капли становятся переохлажден­ными. 

Для рассеивания облаков (и туманов) в них вводят с земли или самолета хладореагенты — частицы сухого льда, твердого СО2 (углекислоты) или льдообразующее вещество — йодистое серебро. Возникшие кристаллики льда укрупняются и выпадают дождем — «население» облака редеет, капли начинают испаряться за счет уменьшения концентрации пара. Дожди по заказу уже вызывали в ряде стран.


Орошение взрывом. Существуют различные методы и дождевальные установки для искусственного ороше­ния сельскохозяйственных угодий. Отметим новый ори­гинальный газовзрывной способ. Он обеспечивает вы­брос и распыливание струи воды на расстояние 100 и более метров при взрыве и воспламенении горючей сме­си, подаваемой в свободное пространство — камеру сго­рания над жидкостью (изобретение инженера Г. П. Примова). Удается получить относительно однородные кап­ли диаметром не более 600 микрометров. Поливальная машина должна соблюдать свой рацион «кормления» — слишком крупные частицы ранят растения и утрамбо­вывают землю, а мелкие — быстро испаряются. На литр жидкости тратится 1/4 грамма топлива. Установка по­лучается экономичней и компактней многих других.


Паук. Южноамериканская мастафора (родич обычного нашего крестовика) применяет своеобразный метод охоты: вращает лапками паутину с каплей клейкой жидкости на конце, пока не зацепит неосторожную мош­ку. «Эти искусные, мерзкие и хитрые пауки» изобрели свой метод намного раньше, чем человек: туземцы-охотники Патагонии бросают вертящуюся веревку с грузи­ками, стреноживая бегущее животное.


Порошковая металлургия использует (в частности) метод распыливания жидкого металла, капельки кото­рого, застывая, образуют мелкий порошок; из него по специальной технологии (спекание) изготовляют дета­ли машин. Эффективен способ плазменного напыле­ния порошков высокотемпературной газовой струей на поверхность изделия. Часто до 99 процентов массы де­тали можно изготовить из дешевых сортов стали — порошковая металлургия способна одеть ее в защитную «рубашку»; 60 процентов деталей заменяются из-за из­носа всего лишь 0,3 миллиметра рабочей поверхности. В металлургии гранул (новое, весьма перспективное на­правление) пышущий жаром водопад металла распы­ляют высоконапорной струей воздуха на капли диамет­ром около 20 микрометров, сразу подвергая их резкому дополнительному охлаждению. За доли секунды возни­кают гранулы. Гранулированный металл приобретает новые свойства, он идет на изготовление деталей по особой технологии.


Пузырьковая камера — следующий после камеры Вильсона шаг в экспериментальной технике (созда­тель— американский физик Дональд Глезер, Нобелев­ская премия 1952 г.). Вильсон использовал пусковой механизм неустойчивого равновесия в пересыщенном паре, а Глезер — аналогичный механизм в неустойчи­вом равновесии перегретой или нестабильной жидкости. Чем чище жидкость и стенки сосуда, тем меньше раз­мер зародышевых пузырьков газа — будущих центров закипания. Такую жидкость можно перегреть выше обычной точки равновесного кипения, не приведя к за­кипанию. В обычных условиях температура кипения поднимается с ростом давления, но перегретая жид­кость, сжатая поршнем, длительное время не кипит. При мгновенном снятии нагрузки с поршня жидкость становится нестабильной, ее фазовое состояние неустой­чивым, температура падает ниже точки кипения, вот-вот готовы возникнуть пузырьки пара. 

Быстрая элементарная частица, запущенная в каме­ру, имеет шансы столкнуться с окружающими атома­ми — жидкость плотнее газа в сотни раз. Столкновения создают местные центры зарождения пузырьков пара, вереница которых и отмечает траекторию полета частицы — мы снова видим невидимое. Траектория просту­пает мгновенно, диффузия и конвекция не успевают раз­мыть ее. Например, гигантская пузырьковая камера на жидком водороде «Мирабель» имеет объем 10 м3 и об­служивает ускоритель АН СССР в Серпухове. Сущест­вуют и более крупные камеры.


Радуга — явление разложения «белого» света на его «цветные» составляющие в капельках воды, содержа­щихся в атмосфере, при освещении завесы дождя сол­нечными лучами.


Распыливания спектр — непрерывное распределение капель, дробящихся в потоке жидкой струи, по различ­ным диаметрам.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*