KnigaRead.com/

Макс Лауэ - ИСТОРИЯ ФИЗИКИ

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Макс Лауэ, "ИСТОРИЯ ФИЗИКИ" бесплатно, без регистрации.
Перейти на страницу:

Эти факты, непонятные с точки зрения волновой теории света, точно соответствовали предсказаниям квантовой теории. Эйнштейн определил свет, как поток квантов света (фотонов), и приписал каждому кванту энергию h кроме того, он допустил, что "каждый электрон освобождается при посредстве одного кванта. Здесь непосредственно происходит бомбардировка облучаемых тел квантами света. Если hменьше, чем работа, необходимая для освобождения электрона (работа выхода), то эффект не наступает; это значит, что со стороны больших длин волн существует предел, который зависит от облучаемого тела. Но если v выше этого предела, то энергия освобожденного электрона равна энергии hфотона, уменьшенной на работу выхода электрона. Теория Эйнштейна так точно описала это явление, что Р. А. Милликен смог в 1916 г. из наблюдений частоты света и энергии фотоэлектронов дать верное определение значения h.

Исходя из тех же соображений, Эйнштейн установил в 1912 г. основной фотохимический закон, согласно


которому при всякой фотохимической реакции происходит сначала поглощение кванта света, а затем вызванное им превращение в одном атоме или молекуле. Этот закон также был признан правильным, после того как многие исследователи, особенно Эмиль Варбург (1846-1931) и Джемс Франк, благодаря большому трудолюбию и проницательности ясно установили побочные реакции и прочие усложнения, часто присоединявшиеся к описанному элементарному акту поглощения фотона, в силу чего число превращенных молекул становилось иногда меньше, а иногда в тысячи раз больше, чем это соответствует закону.

Явление, обратное фотоэлектрическому эффекту, заключается в возникновении излучения из-за захвата электрона атомом или молекулой. Если этот захват происходит в одном элементарном акте, то возникает фотон, энергия hv которого равна кинетической энергии электрона (сложенной с величиной соответствующей работы выхода). При возникновении рентгеновских лучей в трубке Рентгена происходит как раз торможение электронов на антикатоде во многих элементарных актах. Но наибольшая возможная частота (или наименьшая возможная длина волны) всегда соответствует кинетической энергии электронов. Это утверждает открытый в 1915 г. В. Дюане и Ф. Л. Гунтом закон, определяющий границу спектра торможения со стороны коротких длин волн. В 1912 г. при открытии интерференции рентгеновских лучей этот закон еще не был известен, поэтому М. Лауэ должен был, согласно своей теории, ожидать гораздо больше точек интерференции, чем фактически оказалось, и ошибочно приписал их отсутствие селективным свойствам атомов кристалла. Согласно закону Дюане-Гунта фактически не оказалось волн короткой длины, которые должны были бы появиться в недосчитанных точках.

Еще яснее, пожалуй, обнаруживается реальность светового кванта в найденном в 1923 г. А. X. Компто-ном рассеянии рентгеновских лучей, поскольку при этом играет роль не только энергия светового кванта,


но и его импульс. Уже Рентген заметил, что эти лучи испытывают диффузное рассеяние во всех телах. Это рассеяние, отчасти происходящее с неизменной длиной волны, как это было давно известно в случае света, было одной из основных предпосылок успешности опытов по интерференции в кристаллах. Но Комптон показал, что наряду с этим появляется рассеяние с увеличенной длиной волны, иначе говоря, с уменьшенной частотой. Теория этого явления, развитая Комптоном и независимо от него П. Дебаем, является по существу применением законов сохранения энергии и импульса к взаимодействию между квантом света и свободным электроном. Квант света несет с собой определенные энергию и импульс. После удара часть энергии и импульса переходит к электрону, а квант летит дальше в другом направлении с уменьшенной энергией и, следовательно, уменьшенной частотой. Это представление подтвердилось во всех соответствующих опытах.

Однако мы зашли слишком далеко вперед и должны немного вернуться. В 1875 г. Генрих Фридрих Вебер (1842-1913) получил для удельной теплоты обеих модификаций углерода - алмаза и графита, а также для бора и кремния гораздо меньшие значения, чем это вытекает из закона Дюлонга-Пти (гл. 10). При этом он показал также, что при возрастании температуры эти значения все больше и больше приближаются к теоретическим значениям. Эйнштейн, который в качестве цюрихского студента слушал Вебер а, дал в 1907 г. теорию этого явления. Согласно статистике Больцма-на - Гиббса энергия гармонических осцилляторов является линейной функцией абсолютной температуры; поэтому удельная теплота системы, состоящей из подобных осцилляторов, остается постоянной. Но согласно статистике Планка энергия при падении температуры уменьшается гораздо быстрее и удельная теплота падает при низких температурах экспоненциально до нуля. Благодаря тому, что Эйнштейн приписал атомам твердых тел устойчивые положения покоя, вокруг которых они колеблются с определенной частотой, он


смог качественно объяснить наблюдаемое уменьшение удельной теплоты. В 1911 г. П. Дебай дополнил это представление: он приписал упругим собственным колебаниям твердого тела энергию, заданную Планком для осциллятора. Так получился знаменитый закон пропорциональности удельной молярной теплоты третьей степени температуры, который хорошо описывает факты при температуре, близкой к абсолютному нулю. Измерения В. Нернста и других подтвердили это впоследствии для многих тел.

Три важных открытия принес 1913 г. Во-первых, Дж. Франк и Г. Герц исследовали торможение электронов атомами газа при их соударениях; перенос энергии от ударившегося электрона на встреченный им атом происходит лишь в определенных дискретных количествах, зависящих от природы атома. Объяснение было очевидным: атомы имеют дискретные состояния энергии, точно так же, как это утверждал Планк для резонатора, но эти уровни энергии не равноотстоящие. Если атом будет возбужден, находясь в начальном состоянии, т. е. на самом низшем уровне, то электрон должен доставить ему разницу в энергии между самым высоким уровнем и основным; тогда электрон теряет точно это количество энергии. Те же исследователи показали также, что отнятая у электрона энергия зачастую испускается в виде светового кванта и что частота этого излучения вычисляется из равенства энергии кванта hи потерянной электроном энергии. В работах Франка и Герца нашла, таким образом, прямое экспериментальное подтверждение гипотеза о дискретных уровнях энергии.

Вторым большим экспериментальным открытием с течение 1913 г. было открытие расщепления спектральных линий водорода под действием электрического поля, обнаруженное Иоганном Штарком. Но большее значение, чем оба эти открытия, имело теоретическое открытие Нильсом Бором атомной модели, которая


представляет собой изменение модели Резерфорда путем введения квантовых условий. В то время как модель Резерфорда допускала для движения электрона вокруг атомного ядра непрерывный ряд траекторий, эти квантовые условия отобрали из них дискретный ряд круговых траекторий. Согласно обобщению А. Зоммер-фельда (1916) допустимы также эллипсы. Квантовые условия гласили: фазовые интегралы для каждого дозволенного пути являются целыми кратными кванта действия h. Но так как с каждой орбитой связана также энергия движения, то тем самым получается теория дискретных уровней энергии. Если атом при испускании одного кванта переходит от более высокого уровня Е1к более низкому уровню Е2, то в соответствии с идеями, подтверждаемыми фотоэлектрическим эффектом, квант должен иметь частоту

Напротив, при поглощении одного кванта энергии h атом переходит от состояния Е2к состоянию Е1. Это, между прочим, мысль, которую уже в 1912 г. применил Дж. Дж. Томсон для объяснения характеристических К-, L-, М-излучений элементов. Так, по Бору, возникают линейчатые спектры.

Первую победу эта теория одержала после объяснения Бором спектра водорода. В 1885 г. Иоганн Якоб Бальмер (1825-1898) указал на пропорциональность частотлиний, лежащих в видимой области, выражению

1/22-1/m2 причем т может принимать все значения ряда

чисел 3, 4, 5, 6 и т. д. Теперь Бор нашел для своих круговых орбит (а Зоммерфельд также для допущенных им эллипсов) дискретные уровни энергии, пропорциональные 1/m2 коэффициент пропорциональности -

универсальная постоянная. Следовательно, частоты, соответствующие переходам от одного из этих уровней к


другому, согласно соотношению (I) точно уДовлетво-* ряют формуле Бальмера. Коэффициент пропорциональности - константа Ридберга - получается в соответствии с очень точными измерениями Ф. Пашена (гл. 4). При этом оказалось, что первоначальная теория Зом-мерфельда имеет то преимущество, что она для любого уровня энергии невозбужденного атома допускает несколько орбит. При возбуждении атома электрическим или магнитным полем различные орбиты первоначально единого уровня получают немного отличающиеся между собой значения энергии; уровень «расщепляется», и этому соответствует расщепление спектральных линий согласно приведенной формуле (1). Так стала возможной теория эффекта Штарка, которую дали еще в 1916 г. Карл Шварцшильд (1873-1916) и П. С. Эпштейн. В том же году Дебай и Зоммерфельд разработали теорию нормального эффекта Зеемана.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*