KnigaRead.com/

Лев Ландау - Физика для всех. Молекулы

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Лев Ландау, "Физика для всех. Молекулы" бесплатно, без регистрации.
Перейти на страницу:

"Измерение" (приходится это слово брать в кавычки) твердости при помощи этой шкалы заключается в нахождении места интересующего нас минерала в ряду десяти выбранных стандартов.

Если неизвестный минерал можно процарапать кварцем, но сам он оставляет царапину на полевом шпате, то его твердость равна 6,5.

Металловеды пользуются другим способом определения твердости. Стандартной силой (обычно 3000 кгс) при помощи стального шарика диаметром в 1 см на испытуемом материале делается вмятина. Радиус образовавшейся ямки принимается за число твердости.

Твердость по отношению к царапанию и твердость по отношению к вдавливанию не обязательно сочетаются, и один материал может оказаться тверже другого при испытании на царапание, но мягче при испытании на вдавливание.

Таким образом, нет универсального понятия твердости, не зависящего от способа измерения. Понятие твердости относится поэтому к техническим, но не к физическим понятиям.

Звуковые колебания и волны

Мы уже сообщили читателю много сведений о колебаниях, Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны - этим вопросам была посвящена одна из глав книги 1. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее. Понятно также что дело не может ограничиться влиянием лишь на близлежащий слой воздуха. Тело сожмет ближайший слой, этот слой давит на следующий - и так слой за слоем, частица за частицей приводится в движение весь окружающий воздух. Мы говорим, что воздух пришел в колебательное состояние или что в воздухе происходят звуковые колебания.

Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Физика пользуется понятием звуковых колебаний в более широком смысле. Какие звуковые колебания мы слышим - об этом будет рассказано ниже.

Речь идет о воздухе лишь потому, что звук чаще всего передается через воздух. Но, разумеется, нет никаких особых свойств у воздуха, чтобы за ним оказалось монопольное право совершать звуковые колебания. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. Учение о таких колебаниях обычно называют акустикой.

При звуковых колебаниях каждая частица воздуха в среднем остается на месте - она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия - амплитудой и периодом колебания, т. е. временем, затрачиваемым на совершение полного колебания.

Для описания свойств звуковых колебаний чаще пользуются понятием частоты колебания, нежели периодом. Частота v = 1/T есть величина, обратная периоду. Единица частоты - обратная секунда (с-1), однако такое слово не распространено. Говорят - секунда в минус первой степени или герц (Гц). Если частота колебания равна 100 с-1, то это значит, что за одну, секунду частица воздуха совершит 100 полных колебаний. Так как в физике весьма часто приходится иметь дело с частотами, которые во много раз больше герца, то имеют широкое применение единицы килогерц (1 кГц = 103 Гц) и мегагерц (1 МГц = 106 Гц).

При прохождении равновесного положений скорость колеблющейся частицы максимальна. Напротив, в положениях крайних смещений скорость частицы, естественно, равняется нулю. Мы уже говорили, что если смещение частицы подчиняется закону гармонического колебания, то и изменение скорости колебания следует тому же закону. Если обозначить амплитуду смещения через s0, а амплитуду скорости через v0, то v0 = 2πs0/T иди ν0 = 2πvs0. Громкий разговор приводит частицы воздуха в колебание с амплитудой смещения всего лишь в несколько миллионных долей сантиметра. Амплитудное значение скорости будет величиной порядка 0,02 см/с.

Другая важная физическая величина, колеблющаяся вместе со смещением и скоростью частицы,- это избыточное давление, называемое также звуковым. Звуковое колебание воздуха состоит в периодическом чередовании сжатия и разрежения в каждой точке среды. Давление воздуха в любом месте то больше, то меньше давления, которое было при отсутствии звука. Этот избыток (или недостаток) давления и называется звуковым. Звуковое давление составляет совсем небольшую долю нормального давления воздуха. Для нашего примера - громкий разговор - амплитуда звукового давления будет равна примерно миллионной доле атмосферы. Звуковое давление прямо пропорционально скорости колебания частицы, причем отношение этих физических величин зависит только от свойств среды. Например, звуковому давлению в воздухе в 1 дин/см2 соответствует скорость колебания 0,025 см/с.

Рис. 6.9

Струна, колеблющаяся по закону синуса, приводит и частицы воздуха в гармоническое колебание. Шумы и музыкальные аккорды приводят к значительно более сложной картине. На рис. 6.9 показана запись звуковых колебаний, а именно звукового давления в зависимости от времени. Эта кривая мало похожа на синусоиду. Оказывается, однако, что любое сколь угодно сложное колебание может быть представлено как результат наложения одной на другую большого числа синусоид с разными амплитудами и частотами. Эти простые колебания, как говорят, составляют спектр сложного колебания. Для простого примера такое сложение колебаний показано на рис. 6.10.

Рис. 6.10

Если бы звук распространялся мгновенно, то все частицы воздуха колебались бы, как одна. Но звук распространяется не мгновенно, и объемы воздуха, лежащие на линии распространения, приходят в движение по очереди, как бы подхватываются волной, идущей от источника. Так же точно щепка лежит спокойно на воде до тех пор, пока круговые водяные волны от брошенного камешка не подхватят ее и не приведут в колебание.

Остановим наше внимание на одной колеблющейся частице и сравним ее поведение с движением других частиц, лежащих на той же линии распространения звука. Соседняя частица придет в колебание немного позже, следующая - еще позже. Запаздывание будет нарастать, пока, наконец, мы не встретимся с частицей, отставшей на целый период и поэтому колеблющейся в такт с исходной. Так отставший на целый круг неудачный бегун может пройти линию финиша одновременно с лидером. На каком же расстоянии встретим мы точку, колеблющуюся в такт с исходной? Нетрудно сообразить, что это расстояние λ равно произведению скорости распространения звука с на период колебания Т. Расстояние λ называется длиной волны:

λ = cT.

Через промежутки λ мы будем встречать колеблющиеся в такт точки. Точки, находящиеся на расстоянии λ/2, будут совершать движение одна по отношению к другой, как предмет, колеблющийся перпендикулярно к зеркалу, по отношению к своему изображению.

Если изобразить смещение (или скорость, или звуковое давление) всех точек, лежащих на линии распространения гармонического звука, то получится опять синусоида.

Не следует путать графики волнового движения и колебаний. Рис. 6.11 и 6.12 очень похожи, но на первом по горизонтальной оси отложено расстояние, а на втором - время. Один рисунок представляет собой временную развертку колебания, а другой - мгновенную "фотографию" волны. Из сопоставления этих рисунков видно, что длина волны может быть названа также ее пространственным периодом: роль Т во времени играет в пространстве величина λ.

Рис. 6.11

На рисунке звуковой волны смещения частицы отложены по вертикали, а направлением распространения волны, вдоль которого отсчитывается расстояние, является горизонталь. Это может навести на неверную мысль, что частицы смещаются перпендикулярно к направлению распространения волны. В действительности частицы воздуха всегда колеблются вдоль направления распространения звука. Такая волна называется продольной.

Рис. 6.12

Свет распространяется несравненно быстрее, чем звук,- практически мгновенно. Гром и молния происходят в один и тот же момент, но молнию мы видим в момент ее возникновения, а звук грома доходит до нас со скоростью примерно один километр за три секунды (скорость звука в воздухе составляет 330 м/с). Значит когда слышен гром, опасность удара молнии уже миновала.

Зная скорость распространения звука, обычно можно определить, как далеко проходит гроза. Если от момента вспышки молнии до раската грома прошло 12 с, значит, гроза от нас за 4 км.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*