KnigaRead.com/

Пол Хэлперн - Коллайдер

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Пол Хэлперн, "Коллайдер" бесплатно, без регистрации.
Перейти на страницу:

К началу XX в. физики догадались, что энергия в этих волнах существует в виде отдельных порций, фотонов. Последние со скоростью света летают от одного электрически заряженного тела к другому, вызывая притяжение или отталкивание. Следовательно, все в мире электромагнитные явления, будь то отклонение стрелки компаса или прорезающая небо молния, происходят от обмена фотонами между заряженными частицами.

Помимо электромагнетизма есть еще в природе две силы, играющие роль в ядерных масштабах, - слабое и сильное взаимодействия, - и гравитация, сила, заставляющая яблоки падать, а планеты двигаться. Этими четырьмя силами определяется, как материальные тела притягиваются, отталкиваются и видоизменяются. Когда меняется тип движения - автомобиль плавно начинает ехать и медленно поворачивает, или машину внезапно встряхивает, и она останавливается, визжа тормозами, - к этому причастны какие-то взаимодействия из четырех.

Каждая из сил возникает от обмена своими переносчиками или набором переносчиков. Обмениваясь ими, две частицы притягиваются, или отталкиваются, или же меняют свои свойства. Чем-то напоминает игру в фрисби: там тоже, чтобы поймать тарелку, подходишь поближе - и невольно отступаешь назад, когда она у тебя в руках. Метание предмета туда-сюда не дает игрокам слишком далеко разойтись.

Вдохновившись триумфом Максвелла, обвенчавшего электричество и магнетизм, многие физики решили выступить в роли сводников для других сил. Как хороший хозяин старается на празднике наладить отношения между гостями, так и ученые, пытаясь установить связи, сделали ставку на поиск общего. Могут ли все четыре взаимодействия описываться одной системой уравнений?

На сегодняшний день самым крупным продвижением в этом направлении является сплав электромагнетизма и слабых сил, совершенный независимо друг от друга американскими физиками Стивеном Вайнбергом и Шелдоном Глэшоу и пакистанским физиком Абдусом Саламом. Объединенное взаимодействие получило название электрослабого. На пути к нему встретился, однако, далеко не один подводный камень.

В частности, серьезную проблему представлял широкий разброс в массах переносчиков каждой из сил. У фотонов нулевая масса, в то время как частицы, ответственные за слабое взаимодействие, довольно тяжелые. Из-за этого, кстати, радиус действия слабых сил гораздо короче. Чтобы лучше почувствовать разницу между электромагнитными и слабыми переносчиками, представьте себе, что вы сначала выполняете подачу мячом, легким, как пушинка, а потом вам дают свинцовый шар для боулинга. Он, конечно, вряд ли долго задержится в воздухе и камнем рухнет на пол. Разве можно назвать честным состязание между силами, поставленными в столь неодинаковые условия?

Тем не менее иногда неравенство возникает из имевшей место гармонии. Симметрия, бывает, рушится, и коллекционеры древних скульптур хорошо это знают. Могло так случиться, что ранняя Вселенная в течение считаных мгновений после ослепительного Большого взрыва, положившего ей начало, недолго пребывала в состоянии гармонии. Все силы находились в идеальном равновесии, пока что-то не нарушило этот баланс масс. И тогда одни переносчики стали тяжелее других. Так, может быть, сегодняшний разброс в силе взаимодействий явился результатом какого-то вездесущего процесса, разрушающего симметрию?

В 1964 г. британский физик Питер Хиггс предложил элегантный механизм для объяснения спонтанного нарушения первоначальной симметрии Вселенной. Этот механизм постулирует наличие особой сущности, так называемого поля Хиггса, которое пронизывает весь Космос, устанавливая фундаментальный масштаб энергии. (Поле математически описывает, как свойства силы или частиц меняются от точки к точке.) Оно содержит в себе своего рода стрелку, или фазовый угол, которая может указывать на любую точку окружности. При невероятно высоких температурах, сопровождавших момент рождения Вселенной, положение стрелки размыто. Она ведет себя наподобие быстро вращающейся рулетки. Но когда температура падает, колесо рулетки встает как вкопанное, и стрелка останавливается в случайном месте. В итоге изначальная симметрия поля Хиггса, не отдававшего предпочтение ни одному из углов, спонтанно нарушается путем выбора одного конкретного угла. А поскольку полем Хиггса определяется вакуумное состояние Вселенной (состояние с наименьшей энергией), нарушение симметрии неизбежно влечет за собой превращение так называемого ложного вакуума (наименьшая энергия не равна нулю) в истинный (с нулевой энергией). Из знаменитого завета Альберта Эйнштейна Е = тс 2 (энергия равна массе, помноженной на скорость света в квадрате) тогда следует: полученная энергия - все равно что масса, которая и распределяется между разными элементарными частицами, включая переносчиков слабого взаимодействия. Одним словом, останавливаясь, хиггсовская «рулетка» придает массу частицам, в том числе отвечающим за слабые силы, и последние становятся тяжелее, хотя фотон по-прежнему не имеет массы. За его удивительную способность снабжать массой другие частицы «хиггс» прозвали «божественной частицей».

Если механизм Хиггса верен, от соответствующего поля должна была остаться своя элементарная частица. Из-за ее массы, которая больше чем в сто раз превосходит массу протона, сидящего в ядре водородного атома, ее можно надеяться увидеть только в бурных процессах, какими являются высокоэнергетические столкновения частиц. Но после десятков лет поисков этот ключевой ингредиент электрослабой теории пока так и не найден. Как-то незаметно неуловимая божественная частица превратилась в святой Грааль современной физики.

Если забыть про ненайденный «хиггс», теория электрослабого объединения успешно доказала свое право на существование. Ее значение так велико, что ее даже называют Стандартной моделью. Однако, к большому разочарованию всего физического сообщества, попытки объединить электрослабое взаимодействие с оставшейся парой сил плодов до сих пор не принесли.

Теории электрослабых и сильных взаимодействий удается по крайней мере сформулировать на одном и том же языке - в терминах квантовой механики. Разработанная в 20-х гг. прошлого века, квантовая механика оказалась мощным инструментом для описания природы на субатомных расстояниях. Но хотя она точно предсказывает средние для различных физических процессов, для того же рассеяния (соударения и разлета двух и более частиц) или распада, ее неотъемлемым свойством является неопределенность, с которой трудно свыкнуться. Как бы мы ни пытались докопаться до точного хода физических событий, происходящих на субатомных масштабах, в лучшем случае нам остается бросать монетку или играть в кости. Эйнштейн так и не смог смириться с тем, что приходится делать ставки, хотя, казалось бы, все должно быть кристально ясно и без них. Он провел остаток своей жизни, пытаясь построить взамен новую теорию. Однако квантовая механика, подобно молодому Моцарту, гениальному, но дерзкому, представила на наш суд столько изумительных симфоний, что на ее шалости закрыли глаза.

Физикам, дорожащим точностью, не мог не полюбиться шедевр самого Эйнштейна - общая теория относительности. Она объясняет гравитацию во всех деталях и, в отличие от теорий остальных взаимодействий, дает не вероятностное, а детерминированное описание. Кроме того, в теории Эйнштейна пространство и время оставили свою роль фоновых координат и стали полноправными участниками физических процессов. Ученые не опускают рук, но пока нет общепринятого способа примирить гравитацию и квантовую механику. Это как пытаться настроить на победу команду, отправляющуюся на олимпиаду по лингвистике, и вдруг обнаружить, что один из четырех игроков, признанный эксперт в своей области, говорит на никому не понятном языке.

У ученых куда-то затерялся один из элементов мозаики. Из четырех фундаментальных взаимодействий два, слабое и электромагнетизм, явно подходят друг к другу. Сильное взаимодействие тоже не выглядит третьим лишним, но еще никто до конца не знает, с какой стороны его пристроить. А вот гравитация будто попала сюда совсем из другой коробки. Как же нам воссоздать первоначальную симметрию Космоса?

Современной физике известны и другие случаи асимметрии. Так, например, разница в количестве материи и антиматерии (она напоминает материю, но противоположно заряжена) - первой во Вселенной намного больше. Или существенные различия в поведении фермионов (из них состоит материя) и бозонов (они переносят взаимодействия). Как Монтекки и Капулетти, фермионы и бозоны принадлежат к разным семьям со своим набором традиций. Собираясь вместе, они ведут себя по-разному: фермионам всегда нужно больше места. Попытки примирить два семейства привели к гипотезе великого вселенского союза под названием суперсимметрия. Она требует, чтобы у каждого члена одной семьи был родственник в другой. Эти суперсимметричные пары, возможно, помогут решить одну из главных астрономических головоломок: почему галактики двигаются так, будто в них больше массы, чем нам кажется? Может быть, вся или почти вся темная материя состоит из этих самых суперсимметричных частиц? В любом случае, их никто никогда не видел, и ученым еще предстоит их найти.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*