Роджер Пенроуз - Большое, малое и человеческий разум
Одну из поставленных перед собой задач Пенроуз, безусловно, решил с блеском — он создал некий манифест или программу развития теоретической физики XXI века. В трех первых главах книги ему удалось представить связную картину того, как должна быть «устроена» совершенно новая физика, основанная на общей идее невычислимости некоторых операций и объективного восстановления волновых функций, что и является основной идеей книги. Правильность предлагаемых концепций в конечном счете будет определяться тем, смогут ли Пенроуз и его последователи действительно создать физическую теорию нового типа. В любом случае, даже если работы по этой программе не приведут к быстрым успехам, ее основные идеи, по моему глубокому убеждению, окажут плодотворное влияние на будущее развитие теоретической физики и математики.
Глава 1. Пространство-время и космология
Предлагаемая читателю книга называется «Большое, малое и человеческий разум», и поэтому в полном соответствии с названием две ее первые главы посвящены самым большим и самым малым объектам в окружающей нас физической Вселенной, которую я с предельной схематичностью и простотой изобразил в виде «сферы» на рис. 1.1. Я не буду тратить время на чисто «ботанические» описания того, что и как происходит в разных частях Вселенной, а попробую обратить ваше внимание на анализ и понимание реальных законов, управляющих ее поведением. Основная причина, по которой я разделил физические законы на части, относящиеся к «большому» и «малому», заключается в том, что общие закономерности физических процессов в очень большом и очень малом масштабах представляются весьма различными. Центральной темой гл. 3, где речь идет о человеческом сознании, является именно это бросающееся в глаза различие между законами природы для разномасштабных явлений. Поскольку я буду говорить о физическом мире на языке описывающих его физических теорий, я просто обязан сказать хоть что-то и о другом мире — мире Платона, философском представлении мира идей, абсолютов и математических истин. Конечно, платоновский мир содержит и другие абсолютные понятия (такие как Добро и Красота), но я в данном случае буду говорить лишь о математических принципах и понятиях. Некоторым людям трудно представить себе существование этого мира вообще, и они предпочитают считать математические понятия просто какими-то идеализированными формами объектов нашего физического мира, и в этом случае, конечно, «математический мир» следует рассматривать всего лишь как порождение нашего физического мира (рис. 1.2).
Рис. 1.1.
Рис. 1.2.
Я лично полагаю (и, мне кажется, большинство математиков и физиков-теоретиков придерживаются примерно той же точки зрения), что математика имеет другие, более серьезные основания и представляет собой некую структуру, управляемую собственными вневременными законами. Поэтому, возможно, многие физики и математики предпочли бы считать физический мир порождением «вневременного» математического мира идей. Соответствующая картина (рис. 1.3) при всей ее простоте очень важна для рассматриваемых в этой книге проблем (в особенности это относится к материалу гл. 3).
Рис. 1.3.
Наиболее замечательной характеристикой законов природы является то, что они подчиняются математическим закономерностям с исключительно высокой точностью. Чем глубже мы понимаем законы природы, тем сильнее чувствуем, что физический мир как-то исчезает, «испаряется», и мы остаемся лицом к лицу с чистой математикой, т. е. имеем дело лишь с миром математических правил и понятий.
Прежде чем перейти к дальнейшему рассмотрению, нам следует оценить временные и пространственные масштабы Вселенной и как-то связать их с местом и ролью человека в общей картине мира. Я сделал попытку объединить масштабы некоторых известных объектов и процессов в единую диаграмму (рис. 1.4), где слева представлены характерные времена, а справа — характерные размеры. В нижнем левом углу рисунка указан минимальный масштаб времени, имеющий какой-то физический смысл. Этот интервал времени, равный 10-43 с, называется планковским временем, или «хрононом», и он намного короче продолжительности всех известных нам процессов, включая очень краткие процессы физики элементарных частиц (например, время существования самых короткоживущих частиц-резонансов составляет около 10-23 с). Выше по диаграмме в логарифмическом масштабе указана длительность некоторых известных процессов, вплоть до возраста Вселенной.
Рис. 1.4. Характерное время и размеры некоторых объектов и процессов Вселенной.
Справа на диаграмме приведены расстояния, соответствующие определенным временным масштабам. Времени Планка (хронону) соответствует фундаментальная единица, называемая планковской длиной. Две эти величины естественным образом возникают при любой попытке объединить физические теории, описывающие очень большие и очень малые объекты (речь идет об общей теории относительности Эйнштейна и квантовой механике). При любом сочетании вариантов этих теорий длина и время Планка выступают в качестве фундаментальных единиц измерения. Переход от левой шкалы диаграммы к правой осуществляется умножением на скорость света, что позволяет легко сопоставлять любой промежуток времени с расстоянием, проходимым световым сигналом за это время.
Размеры физических объектов на рисунке изменяются от 10-15 м (характерный размер элементарных частиц) до 1027 м (радиус наблюдаемой Вселенной, приблизительно соответствующий ее возрасту, умноженному на скорость света). Интересно оценить положение, которое на диаграмме занимаем мы, люди.
На шкале размеров мы находимся где-то в середине, будучи чрезвычайно крупными по отношению к длине Планка (и превышая на много порядков размеры элементарных частиц), но очень маленькими в масштабах всей Вселенной. С другой стороны, на временной шкале процессов длительность человеческой жизни выглядит совсем неплохо, и ее можно сопоставлять с возрастом Вселенной! Люди (и в особенности поэты) любят жаловаться на эфемерность человеческого существования, однако наше место на временной шкале вовсе не является жалким или ничтожным. Разумеется, нам следует помнить, что все сказанное относится к «логарифмической шкале», однако ее использование представляется совершенно оправданным при рассмотрении столь гигантских диапазонов значений. Говоря другими словами, число человеческих жизней, укладывающихся в возрасте Вселенной, намного меньше, чем число времен Планка (или даже времен жизни элементарных частиц), укладывающихся в продолжительность жизни человека. В сущности, мы являемся довольно стабильными структурами Вселенной. Что же касается пространственных масштабов, то мы действительно находимся где-то в середине шкалы, вследствие чего нам не дано воспринимать в непосредственных ощущениях ни очень большие, ни очень малые объекты окружающего нас физического мира.
Давайте рассмотрим, какие физические теории описывают объекты столь различных размеров. В схему рис. 1.5 я попытался «втиснуть» всю существующую физику. При этом мне, конечно, пришлось пожертвовать многими незначительными деталями (например, просто выкинуть из картины все уравнения и разделы наук!), однако, на мой взгляд, я сохранил фундаментальные теории.
Рис. 1.5.
Наиболее существенным обстоятельством является то, что в физике используются два совершенно разных подхода. Для описания поведения микрообъектов мы используем квантовую механику (я обозначил ее на рисунке словами «квантовый уровень»), о которой подробнее рассказано в гл. 2. Большинство людей полагают, что квантовая механика является странной, загадочной и недетерминистической теорией, но это неверно. На самом деле, если вы рассматриваете события на квантовом уровне, то квантовая теория является совершенно точной и детерминистической. Наиболее известным ее соотношением является уравнение Шредингера, которое определяет поведение физического состояния квантовой системы (его называют просто квантовым состоянием) и, безусловно, является совершенно точным и детерминистическим. Я использую букву U для обозначения всех расчетов или методов, связанных с квантовым уровнем рассмотрения. Неопределенность в квантовой механике возникает лишь тогда, когда вы осуществляете так называемое «измерение», требующее значительного «увеличения» масштаба события для перехода с квантового уровня на классический. Более подробно мы будем рассматривать эти проблемы в гл. 2.