Стивен Хокинг - Мир в ореховой скорлупе
Это новое явление способно также привести к созданию бомб и, что возможно, хотя уверенность в этом меньше, исключительно мощных бомб нового типа».
Это привело к появлению Манхэттенского проекта и, в конечном счете, бомб, которые взорвались над Хиросимой и Нагасаки в 1945 г. Некоторые люди винят за атомную бомбу Эйнштейна, поскольку он открыл соотношение между массой и энергией, но с тем же успехом можно обвинять Ньютона в крушении самолетов, поскольку он открыл гравитацию. Сам Эйнштейн не принимал никакого участия в Манхэттенском проекте и пришел в ужас от бомбардировки.
После своих пионерских статей 1905 г. Эйнштейн завоевал уважение в научном сообществе. Но только в 1909 г. ему предложили место в Цюрихском университете, что позволило расстаться с Швейцарским патентным бюро. Два года спустя он перебрался в Немецкий университет в Праге, но в 1912 г. вернулся в Цюрих, на это раз — в ЕТН. Несмотря на антисемитизм, охвативший тогда большую часть Европы и проникший даже в университеты, Эйнштейн теперь очень высоко котировался как ученый. К нему поступили предложения из Вены и Утрехта, но он решил отдать предпочтение должности исследователя Прусской академии наук в Берлине, поскольку она освобождала его от преподавательских обязанностей. Он переехал в Берлин в апреле 1914 г., и вскоре к нему присоединились жена и двое сыновей. Но семейная жизнь не заладилась, и довольно быстро семья ученого вернулась в Цюрих. Несмотря на его эпизодические визиты к жене, они в конце концов развелись. Эйнштейн позднее женился на своей кузине Эльзе, которая жила в Берлине. Однако все годы Первой мировой войны он оставался свободным от семейных уз, отчего, возможно, этот период его жизни оказался таким плодотворным для науки.
Ядра состоят из протонов и нейтронов, которые удерживаются вместе сильным взаимодействием. Но масса ядра всегда меньше суммарной массы протонов и нейтронов, из которых оно состоит. Разница служит мерой ядерной энергии связи, которая удерживает частицы в ядре. Энергию связи можно вычислить по формуле Эйнштейна Аmc2, где Am — разница между массой ядра и суммой масс входящих в него частиц; с — скорость света.
Именно выделение этой потенциальной энергии порождает разрушительную мощь ядерных устройств.
Хотя теория относительности полностью соответствует законам, которые управляют электричеством и магнетизмом, она несовместима с ньютоновским законом тяготения. Этот последний говорит, что если изменить распределение вещества в одном месте пространства, то изменения гравитационного поля мгновенно проявятся повсюду во Вселенной. Это не только означает возможность передавать сигналы со сверхсветовой скоростью (что запрещено теорией относительности), но — для придания смысла понятию «мгновенно» — требует также существования абсолютного или универсального времени, от которого теория относительности отказалась в пользу индивидуального времени.
Эйнштейн знал об этой трудности с 1907 г., когда еще работал в бернском патентном бюро, но только в 1911 г. в Праге начал серьезно думать над проблемой. Он понял, что есть тесная связь между ускорением и гравитационным полем. Находясь в небольшом замкнутом помещении, например в лифте, нельзя сказать, покоится ли оно в земном гравитационном поле или ускоряется ракетой в открытом космосе. (Конечно, это было задолго до появления сериала «Звездный путь»,[3] и Эйнштейн скорее представлял себе людей в лифте, чем в космическом корабле.) Но в лифте нельзя долго ускоряться или свободно падать: все быстро закончится катастрофой (рис. 1.9).
Рис. 1.9
Наблюдатель в контейнере не ощущает разницы между пребыванием в неподвижном лифте на Земле (а) и перемещением в ракете, движущейся с ускорением в свободном пространстве (Ь).
Отключение двигателя ракеты (с) ощущалось бы точно так же, как свободное падение лифта на дно шахты (d).
Если бы Земля была плоской, мы могли бы с равным успехом приписать падение яблока на голову Ньютона как тяготению, так и тому, что Ньютон вместе с поверхностью Земли ускоренно двигался вверх (рис. 1.10). Такой эквивалентности между ускорением и гравитацией не наблюдается, однако, на круглой Земле: люди на противоположных сторонах земного шара должны были бы ускоряться в разных направлениях, оставаясь при этом на постоянном расстоянии друг от друга (рис. 1.11).
Но ко времени возвращения в Цюрих в 1912 г. в голове Эйнштейна уже сложилось понимание, что эквивалентность должна работать, если пространство-время окажется искривленным, а не плоским, как считалось в прошлом. Идея состояла в том, что масса и энергия должны изгибать пространство-время, но как именно — это еще предстояло определить. Такие объекты, как яблоки или планеты, должны стремиться к тому, чтобы двигаться сквозь пространство-время по прямым линиям, но их пути выглядят искривленными гравитационным полем, потому что искривлено само пространство-время (рис. 1.12).
Будь Земля плоской (рис. 1.10), с равным основанием можно было бы сказать, и что яблоко упало на голову Ньютону под действием гравитации, и что Земля вместе с Ньютоном двигалась с ускорением вверх. Эта эквивалентность не работает для сферической Земли (рис. 1.11), поскольку люди на противоположных сторонах земного шара должны удаляться друг от друга. Эйнштейн обошел это препятствие, введя искривленное пространство-время.
Рис. 1.12 Искривление пространства-времени
Ускорение и гравитация могут быть эквивалентны, только если массивное тело искривляет пространство-время, тем самым изгибая траектории объектов в своей окрестности.
С помощью своего друга Марселя Гроссмана Эйнштейн изучил теорию искривленных пространств и поверхностей, которая была разработана ранее Георгом Фридрихом Риманом. Но Риман думал только об искривленном пространстве. Эйнштейн понял, что искривляется пространство-время. В 1913 г. Эйнштейн и Гроссман совместно написали статью, в которой выдвинули идею, что сила, о которой мы думаем как о гравитации, — это лишь проявление того, что пространство-время искривлено. Однако из-за ошибки Эйнштейна (и ему, как всем нам, свойственно было ошибаться), им не удалось найти уравнения, которые связывают кривизну пространства-времени с находящимися в нем массой и энергией. Эйнштейн продолжил работать над проблемой в Берлине, где его не беспокоили домашние дела и практически не затронула война, и в итоге нашел правильные уравнения в ноябре 1915 г. Во время поездки в Гёт-тингенский университет летом 1915 г. он обсудил свои идеи с математиком Давидом Гильбертом, и тот независимо вывел те же самые уравнения на несколько дней раньше Эйнштейна. Тем не менее сам Гильберт признавал, что честь создания новой теории принадлежит Эйнштейну. Это была идея последнего — связать гравитацию с искривлением пространства-времени. И надо отдать должное цивилизованности тогдашнего германского государства, за то что научные дискуссии и обмен идеями могли без помех продолжаться даже в военное время. Какой контраст с эпохой нацизма, которая наступила двадцатью годами позже!
Новая теория искривленного пространства-времени получила название общей теории относительности, чтобы отличать ее от первоначальной теории, которая не включала гравитацию и ныне известна как специальная теория относительности. Она получила очень эффектное подтверждение в 1919 г., когда британская экспедиция наблюдала в Западной Африке незначительное изгибание света звезды, проходящего вблизи Солнца во время затмения (рис. 1.13). Это было прямым доказательством того, что пространство и время искривляются, и стимулировало самый глубокий пересмотр представлений о Вселенной, в которой мы живем, с тех пор как Евклид написал свои «Начала» около 300 г. н. э.
Рис. 1.13. Искривление света
Свет звезды проходит вблизи Солнца и отклоняется, поскольку Солнце искривляет пространство-время (а). Это приводит к небольшому смещению видимого положения звезды при наблюдении с Земли (Ь). Увидеть такое можно во время затмения.
Общая теория относительности Эйнштейна превратила пространство и время из пассивного фона, на котором разворачиваются события, в активных участников динамических процессов во Вселенной. И отсюда выросла великая задача, которая остается на переднем крае физики XXI века. Вселенная заполнена материей, и эта материя искривляет пространство-время таким образом, что тела падают друг на друга. Эйнштейн обнаружил, что его уравнения не имеют решения, которое описывало бы статическую, неизменную во времени Вселенную. Вместо того чтобы отказаться от такой вечной Вселенной, в которую он верил наряду с большинством других людей, Эйнштейн подправил свои уравнения, добавив в них член, названный космологической постоянной, который искривлял пространство противоположным образом, так чтобы тела разлетались. Отталкивающий эффект космологической постоянной мог сбалансировать эффект притяжения материи, тем самым позволяя получить статическое решение для Вселенной. Это была одна из величайших упущенных возможностей в теоретической физике. Если бы Эйнштейн сохранил первоначальные уравнения, он мог бы предсказать, что Вселенная должна либо расширяться, либо сжиматься. На деле же возможность меняющейся во времени Вселенной не рассматривалась всерьез вплоть до наблюдений, выполненных в 1920-х гг. на 100-дюймовом телескопе обсерватории Маунт-Вилсон.