KnigaRead.com/

Яков Гегузин - Живой кристалл

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Гегузин, "Живой кристалл" бесплатно, без регистрации.
Перейти на страницу:

Может произойти и по-другому: кольцевая дислокационная линия (дислокационная петля) будет стягиваться в точку, следовательно, уменьшать свою длину, выделять энергию и возбуждать звук. Может быть и так: в процессе пластического деформирования дислокация сорвется с затормозивших ее стопоров и скачкообразно начнет двигаться, издавая при этом звук.

Мы интересовались, нельзя ли повлиять на звучание деформируемого кристалла. Конечно же, можно. Надо предварительно каким-либо способом ввести в кристалл дислокации, а затем, планомерно деформируя его, привести их в движение.

Нам осталось два дела. Во-первых, рассказать о том, как физики экспериментально исследуют звучание кристалла, обусловленное движением дислокаций, и, во-вторых, о том, как можно этот эффект использовать практически.

Экспериментальных работ по акустической эмиссии кристаллов, обусловленной дислокациями, очень не много. Я расскажу лишь об одном опыте, о том, который мне и понравился больше иных, и вызвал полное к себе доверие. Поставлен он был харьковскими кристаллофизиками В. С. Бойко, Р. И. Гарбером и их сотрудниками. Авторы этого опыта воспользовались тем, что во многих кристаллах, в частности и кристалле кальцита, с которым они и экспериментировали, под влиянием извне приложенной сосредоточенной нагрузки (ее можно создать нажатием на лезвие клина, касающегося поверхности кристалла) получаются скопления большого количества однотипных дислокаций.

Они образуют стенку, концы которой касаются поверхности кристалла. При снятии внешней нагрузки эти скопления покидают кристалл, с большой скоростью дислокации выходят за его пределы. Акт выхода сопровождается сильной акустической эмиссией. Возникающий звуковой сигнал очень четко можно зарегистрировать осциллографом. Для того чтобы не принять желаемое за действительное, авторы опыта с помощью скоростной кинокамеры следили за выходом дислокаций. Момент выхода дислокаций и момент всплеска звука совпали. Убедительный опыт!

Теперь о практических приложениях, точнее, об одном из них, очень важном и очень красивом. В 1959 г. немецкий физик Кайзер, изучая акустическую эмиссию металлов, обнаружил, что, если образец, который под влиянием определенной внешней нагрузки звучал, освободить от этой нагрузки, а потом повторно нагрузить, он зазвучит лишь при условии, если повторная нагрузка превзойдет начальную. В физической литературе это явление именуется «эффект Кайзера». Зная о нем, представьте себе, что некоторый полый сосуд мы герметически закроем металлической мембраной и опустим его в море на некоторую глубину, где к мембране будет приложено напряжение, обусловленное гидростатическим давлением,

σh = dgh,

(d — плотность воды, g — ускорение свободного падения, h — глубина погружения). В воде, согласно Кайзеру, мембрана «вызвучит» все, что должна «вызвучать» при напряжении σh. После извлечения из воды ее следует вынудить начать звучать под влиянием внешней, точно измеряемой нагрузки σ* > σh . Этим самым мы узнаем у мембраны, на какой глубине она находилась. Очевидно, на глубине h = σ*/dg. Таким образом, способность кристалла издавать звуки может быть использована для создания глубиномеров. Я рассказал лишь об общей идее, на которой основан акустический глубиномер. При ее осуществлении возникает много трудностей и ограничений. Трудности преодолеваются, ограничения учитываются.


В КРИСТАЛЛЕ ВОЗНИКАЕТ ТРЕЩИНА

Понятия «трещина», «треснуло» настолько будничны, что кажутся само собой разумеющимися. Треснуло — значит появилась трещина! Появилась трещина — значит треснуло! Между тем трещина заслуживает и, по праву, требует пристального внимания к себе. Ведь только что мы сформулировали сентенцию: «треснуло — значит появилась трещина». А с этим не могут мириться ни конструкторы, создающие машины, ни машины, работающие по замыслу конструкторов.

Итак, о том, как в кристалле поселяется трещина. Возможностей поселить в себе трещину у кристалла — множество! Я хочу рассказать о двух механизмах возникновения трещины в кристалле. О тех, которые отличаются наглядностью и оказываются действующими во многих реальных ситуациях.

Вначале одно общее соображение. Кристаллы под влиянием приложенных к ним усилий должны деформироваться. Если возникающие в кристалле напряжения достаточно велики, его деформация со временем будет нарастать. Хочется сказать: кристалл будет «течь». Так вот, если кристаллу ничто не мешает свободно «течь», он и будет «течь», сохраняя сплошность, а если свободно течь ему нечто мешает, в нем под влиянием нагрузки может возникнуть трещина! Соображение общее, и поэтому такие расплывчатые слова, как «ничто» и «нечто», не должны вызывать протеста. Говоря о течении кристалла, я имею в виду, что под влиянием приложенной нагрузки со временем его деформация нарастает, как, скажем, это могло бы происходить с нагретой до высокой температуры стеклянной нитью, к которой подвешен груз. Сейчас важны не конкретные детали, а общая мысль о том, что трещина может возникнуть, если свободная деформация кристалла, его течение почему-либо запрещено. Только эта мысль!

Теперь о двух конкретных механизмах возникновения трещин. Один из них был понят и описан английским ученым Стро и очень скоро вошел в плоть науки о реальном кристалле. Так бывает часто: ранее неизвестное со временем (и иной раз очень скоро!) кажется само собой разумеющимся. Говорят, что новая идея последовательно вызывает две реакции: вначале — «этого не может быть!», а затем — «иначе и быть не может!». Пожалуй, именно такая судьба оказалась и у идеи механизма появления трещины «по Стро». Вот посудите сами.

Помните очерк о движении дислокаций в плоскости скольжения и аналогию между дислокациями движущимися одна за другой, и цепочкой туристов, идущих по тропке? Если температура кристалла высока, дислокации, остановившиеся перед непреодолимым стопором, диффузионно обходят его. А если температура невысока и, следовательно, диффузионная подвижность атомов мала, вблизи стопора будет происходить иное: головная дислокация у стопора остановится, движущаяся за ней приблизится на расстояние, немного меньшее того, которое было между этими дислокациями, когда они скользили беспрепятственно. Головная дислокация испытает при этом давление. Со временем оно будет нарастать по мере приближения последующих дислокаций цепочки. Если у препятствия затормозится ряд следующих друг за другом п дислокаций, головная дислокация будет испытывать на себе напряжение, n-кратно превосходящее внешнее, то, которое вынуждает дислокации скользить. Оно может оказаться настолько большим, что превзойдет прочность кристалла, сдерживающего напор дислокаций, и вблизи кристалла зародится клиновидная трещина. Она появится вследствие объединения ближайших к стопору дислокаций. Следующие дислокации как-бы проваливаются в зародившуюся трещину, и она подрастает. Пока дислокация скользила свободно, кристалл «тек», а когда встретился стопор и движение дислокаций затормозилось, появилась трещина. Все как и следовало из «общего соображения».

О трещине, возникшей «по Стро», следует кое-что рассказать. Во-первых, ее ширина будет тем больше, чем большее число дислокаций, объединившись, приняло участие в ее формировании. Если это число обозначить п, то ширина трещины будет равна пb, где b — вектор Бюргерса. О такой трещине иногда говорят так: дислокация с Еектором Бюргерса пb. Во-вторых, оказывается, что направление трещины с направлением плоскости скольжения образует угол, близкий к 70°. Не стану приводить расчеты, из которых эта величина следует, а лучше предложу читателю убедиться в правильности утверждения, проделав опыт с моделью кристалла в виде листа белой бумаги. Впервые мне его продемонстрировал профессор Е. Д. Щукин и подарил для этой книги две фотографии, иллюстрирующие последовательные этапы опыта, который он производил, так сказать, собственноручно.

Опыт прост. На листе белой бумаги нужно карандашом провести прямую линию — символ полосы скольжения. Затем на некотором ограниченном участке этой линии бритвой сделать в бумаге разрез. Именно вдоль него можно будет осуществить сдвиг, символизирующий результат скольжения дислокаций. Концы разреза — символы стопоров, далее которых сдвиг не смог и не сможет распространяться. А теперь лист следует положить на гладкий стол, прижать его к столу двумя руками, расположенными с двух сторон от карандашной линии, и, медленно сдвигая руки в противоположных направлениях, спровоцировать сдвиг. При этом бумага, разумеется, прорвется, но не вдоль карандашной линии, а в направлении, образующем с карандашной линией угол, близкий к 70°!

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*