Луи де Бройль - Революция в физике
В момент соударения между электроном и первичным фотоном происходит обмен энергией и импульсом, а поскольку электрон почти всегда можно считать неподвижным по сравнению с фотоном, то в результате такого соударения электрон приобретает, а фотон теряет энергию. Так как частота, соответствующая фотону, пропорциональна его энергии, то после соударения он должен обладать меньшей частотой, чем до соударения.
Великолепно согласующаяся с экспериментальными данными теория эффекта Комптона чрезвычайно проста и позволяет, используя лишь законы сохранения импульса и энергии, точно определить зависимость частоты рассеянного фотона от угла рассеяния. Независимость частоты рассеянного излучения от природы рассеивающего тела объясняется элементарно. Действительно, в акте рассеяния участвуют лишь падающие фотоны и электроны, свойства которых совершенно не зависят от конкретной природы вещества, в состав которого они входят.
Теория Комптона – Дебая так просто и изящно объяснила наиболее существенные особенности комптоновского рассеяния, что сразу стала еще одним блестящим доказательством справедливости фотонной теории света.
В качестве еще одного подтверждения фотонной теории можно указать, например, на эффект Рамана, открытый немного позже эффекта Комптона. Эффект Рамана заключается в изменении частоты рассеянного излучения в области видимого света. Важное отличие этого эффекта от эффекта Комптона состоит в том, что в этом случае частота рассеянного света существенно зависит от природы рассеивающего тела. Кроме того, рассеяние сопровождается также и увеличением частоты. Однако интенсивность рассеянного света с большей частотой гораздо слабее интенсивности света, рассеиваемого с уменьшением частоты. Фотонная теория очень хорошо объяснила все характерные особенности этого явления и дала простое объяснение даже преобладанию рассеяния с уменьшением частоты над рассеянием с увеличением частоты, что было совершенно не под силу классическим теориям.
Короче говоря, за тридцать лет своего существования гипотеза о дискретности природы света оказалась настолько плодотворной, что в настоящее время уже не остается сомнений в ее достоверности. Она открывает новую существенную сторону физической реальности. Но эта гипотеза встречает на своем пути также трудности и вызывает возражения, возникшие еще во времена первых работ Эйнштейна по квантовой теории света.
Прежде всего, возникает вопрос, как совместить дискретность структуры света с волновой теорией, столь неоспоримо подтвержденной многими точными экспериментами? Как совместить между собой существование неделимого кванта света и явления интерференции? В частности, как показал Лоренц, невозможно определить разрешающую способность оптических инструментов (например, телескопа), исходя из предположения о концентрации световой энергии в фотонах, локализованных в пространстве. А как объяснить с точки зрения фотонной теории те же явления интерференции?
Конечно, можно было бы предположить, что явления интерференции связаны с взаимодействием большого числа фотонов, одновременно участвующих в процессе. Но тогда интерференционные явления должны были бы зависеть от интенсивности света и в случае достаточно малой интенсивности, когда в интерференционный прибор попадает одновременно не более одного фотона, вовсе бы отсутствовали. Такой эксперимент впервые был поставлен Тейлором и привел к отрицательному результату. Опыт показал, что какова бы ни была интенсивность падающего света, интерференционная картина остается одной и той же при условии, конечно, что время экспозиции будет достаточно велико. Это указывает на то, что каждый фотон, взятый в отдельности, участвует в явлении интерференции – факт чрезвычайно странный, если считать фотоны локализованными в пространстве.
Другая трудность, которая возникает, если пытаться последовательно придерживаться гипотезы о чисто корпускулярной природе света, состоит в следующем. Самый способ, которым Эйнштейн вводит понятие кванта света, или фотона, опирается на понятие частоты, в свою очередь связанное с представлением о некотором непрерывном периодическом процессе. Чисто же корпускулярные представления об излучении как о совокупности фотонов никак не позволяют определить какую-либо периодичность, частоту. В действительности, частота, фигурирующая в определении кванта, – это частота, заимствованная у волновой теории, которая выводится из явлений дифракции и интерференции. Значит, само определение энергии фотона как произведения частоты на постоянную Планка с чисто корпускулярной точки зрения непоследовательно. Более того, оно как бы устанавливает связь между волновой концепцией света и вновь возродившейся с открытием фотоэффекта корпускулярной концепцией. Однако было бы неправильно думать, что до открытия фотоэффекта последняя не имела под собой никаких оснований.
Явления отражения света от зеркал, прямолинейность его распространения в однородных средах, да и вообще вся геометрическая оптика с ее понятием световых лучей очень естественно укладываются в баллистическую корпускулярную картину. Но теория Френеля, великолепно объяснив все эти баллистические аспекты с чисто волновой точки зрения, привела к тому, что корпускулярная картина оказалась не у дел. Открытие фотоэффекта заставило снова вернуться к представлениям такого рода, хотя, конечно, уже соотношение Эйнштейна между энергией фотона и его частотой показывало, что волновая концепция не отвергается начисто и фотонная теория должна как-то объединить волновые и корпускулярные представления таким образом, чтобы оба аспекта имели определенный физический смысл.
Наконец, следует указать еще на одну тонкость. Согласно классическим представлениям энергия материальной частицы – это величина, имеющая какое-то вполне определенное значение. В теории же излучения никакое излучение нельзя рассматривать как строго монохроматическое, поскольку оно всегда содержит компоненты, частоты которых отличаются друг от друга. Ширина этого спектрального интервала может быть очень мала, но все же всегда отлична от нуля. Этот факт Планк подчеркивал уже в первых своих работах по теории излучения черного тела. Вследствие этого соотношение Эйнштейна, приравнивающее энергию частицы света, фотона, частоте, соответствующей классической волне, умноженной на h, носит несколько парадоксальный характер, поскольку оно приравнивает одну величину, имеющую вполне определенное значение, другой, не имеющей, строго говоря, никакого определенного значения. Дальнейшее развитие квантовой механики раскрыло истинный смысл этого противоречия.
Итак, можно сказать, что фотонная гипотеза, превосходно объясняющая явления фотоэффекта и комптоновского рассеяния, не дает возможности построить последовательную корпускулярную теорию излучения. Она требует развития более глубокой теории, в которой излучение может обладать и волновым и корпускулярным аспектами, причем связь между ними должна быть установлена так, чтобы выполнялось соотношение Эйнштейна.
5. Первые приложения квантовой гипотезы
Гипотеза квантов, блестяще подтвержденная успехом теории излучения черного тела Планка и теории фотоэффекта Эйнштейна, не замедлила обнаружить свою эффективность и в других областях. Приведем несколько примеров.
Статистическая механика доказала теорему о равнораспределении энергии по степеням свободы. В общем виде ее можно сформулировать следующим образом. В механической системе, обладающей очень большим числом степеней свободы и находящейся в состоянии термодинамического равновесия при постоянной температуре, энергия теплового движения распределяется таким образом, что на каждую степень свободы приходится одинаковое ее количество.
Эта теория, совершенно строго доказанная в рамках классической статистической механики, часто очень хорошо подтверждается на опыте.
В частности, блестяще подтвердились следующие из этой теоремы выводы о средней кинетической энергии атомов и молекул в газах, а также вывод об общем характере зависимости теплоемкости газообразных тел от температуры. И тем не менее, как показало дальнейшее развитие квантовой теории, эта теорема оказывается несправедливой. Это, например, следует уже из того, 'что применение ее к равновесному излучению черного тела, приводит к неправильному закону спектрального распределения плотности энергии черного излучения (закон Рэлея – Джинса). И квантовая гипотеза Планка была введена, в частности, для того, чтобы обойти закон о равнораспределении энергии. Если гипотеза Планка справедлива, то она должна позволить определить также границы применимости классических законов и в других областях физики.
Рассмотрим, например, теорию твердых тел. В однородных твердых телах в отсутствие теплового движения атомы находятся в положении равновесия. При тепловом движении атомы колеблются около своих положений равновесия, причем амплитуда этих колебаний тем больше, чем выше температура тела. Согласно теореме о равнораспределении энергии по степеням свободы все атомы, входящие в состав твердого тела, должны обладать одной и той же средней энергией. Основанные на этой теореме статистической механики расчеты приводят к следующему простому и весьма общему результату: атомная теплоемкость всех твердых тел (иначе говоря, количество тепла, которое надо сообщить одному грамм-атому твердого тела, чтобы поднять его температуру на один градус) приблизительно равна шести калориям. В этом и заключается известный закон Дюлонга и Пти, экспериментально установленный ими еще до получения теоретических результатов. Этот закон так хорошо подтверждался для большинства твердых тел при обычных температурах, что химики даже использовали его для определения молекулярного веса некоторых веществ.