Antonio Hernandez-Fernandez - В делении сила. Ферми. Ядерная энергия.
После окончания войны стали публиковаться результаты исследований итальянских научных групп, которые годами ставили опыты по распаду мезонов и их ядерному поглощению и наблюдали поведение, отличное от ожидаемого. В январе 1946 года, как только стало возможно отправлять письма в Италию, не вызывая подозрений, Ферми возобновил переписку с Амальди, который еще оставался в Риме. В конце года Амальди приехал на три месяца в Вашингтон и рассказал Ферми об опыте, проделанном Марчелло Конверси, Этторе Панчини и Оресте Пиччоне. Они собирались опубликовать его и произвести революцию в физике частиц. Интерес Ферми к мезонам разгорелся с новой силой.
Юкава и его коллега Окаяма пришли к выводу, что электромагнитное поле ядра должно влиять и на захват, и на распад мезона. Таким образом, мезоны с положительным зарядом должны распадаться до того, как их поглотит атомное ядро (тоже положительно заряженное), отталкивающее их, в то время как отрицательно заряженные мезоны, скорее всего, не распадались, а поглощались атомными ядрами. Если р — протон, а n — нейтрон, то реакции, которые Юкава выявил для π — мезонов с положительным и отрицательным зарядом, влияющих на ядра, были следующими:
n → p + π ; π + р → n
р → n + π' ; π' + n → р.
Отношение между нейтронами и протонами, которые обменивались пионами (пион — это л) в модели Юкавы, объясняло, почему атомное ядро остается целым. Однако эксперименты Конверси, Панчини и Пиччони поразили научное сообщество, показав, что в теории Юкавы было несоответствие: мю-мезотроны казались скорее разновидностью тяжелых электронов, чем мезонами. При столкновении отрицательных мю-мезотронов с ядрами железа поглощение происходило до распада, но когда опыт повторялся и мю-мезотроны сталкивались с графитом, то и отрицательные, и положительные мезотроны распадались и испускали электрон и позитрон соответственно. Почему отрицательно заряженные мезотроны не были захвачены любым атомным ядром, положительным по определению? Почему предсказанное Юкавой поведение мезонов настолько отличалось от поведения мю-мезотронов в космической радиации?
Как было доказано несколько лет спустя, после того как Коуэн и Рейнес обнаружили нейтрино, мюоны космической радиации могли быть захвачены ядром, испуская при этом нейтрино, как правило
μ + А → В + ν,
или могли распадаться на электрон и два нейтрино:
μ' →е- + νˉ + V.
Таким образом, поведение мюонов и мезонов в присутствии ядер было совершенно разным. Сегодня нам известно, что мюоны являются лептонами, а не мезонами.
В 1939 году Ферми уже изучал аномальное поглощение космических лучей в воздухе. В 1947 году он опубликовал в журнале The Physical Review две статьи на эту тему. Первая была написана в сотрудничестве с Теллером и Вайскопфом, которые в Массачусетском технологическом институте пришли к такому же выводу, а вторая — только с Теллером. Ферми анализировал взаимодействие р-мезотронов с графитом и констатировал, что время захвата мезотрона в самой нижней орбитали углерода не меньше времени спонтанного распада (порядка 10-6 с), хотя это и противоречило ожиданиям (примерно 10-13 с). Таким образом, он доказал, что взаимодействие р-мезотронов с атомными ядрами намного меньше, чем можно было ожидать от μ-мезонов Юкавы, или пионов, переносчиков сильного взаимодействия. Ферми выявил, что р-мезотроны космической радиации ведут себя не так, как мезоны Юкавы. Вскоре после этого Бете и Маршак выступили в пользу гипотезы о том, что это два разных мезона, как и предполагал Ферми.
АДРОНЫ: БАРИОНЫ И МЕЗОНЫ
В стандартной модели физики частиц адронами называются частицы, состоящие из кварков, соединяющихся посредством сильного взаимодействия. Они делятся на две основные группы (хотя сейчас ученые ищут и другие комбинации):
— барионы, состоящие из трех кварков, как нейтроны и протоны;
— мезоны, состоящие из одного кварка и одного антикварка, как пионы (или мезоны) и каоны (или К-мезоны).
Кваркам присвоено барионное число В = 1/3, а антикваркам — В = = -1/3, поэтому у барионов В = 1, а у мезонов — В = 0. Список адронов значительно расширился, когда стали возможны эксперименты в ускорителях частиц с большими энергиями. Обычно они располагаются в зависимости от их квантового числа изоспин.
Схема новых мезонов с нулевым спином: пионы (π0, π+, π-), каоны (К°, К+, К), его античастица (K°) и эта-мезоны (η, η’). S обозначает странность, Q —заряд.
Несколько месяцев спустя Сесил Пауэлл, Сезар Латтес и Джузеппе Оккиалини, изучая космические лучи при помощи техники фотоэмульсии, смогли идентифицировать первый настоящий мезон — π-мезон, или пион: его распад приводил к появлению μ-мезотрона космической радиации, который оказался новым лептоном с массой, очень близкой к массе мезона.
Ферми назвал его просто мюоном. Позже было доказано, что в результате этого распада пиона получаются мюон и его мюонное нейтрино:
π+→μ+ + νμ.
Так появилась физика высоких энергий, и ученые всего мира стали грезить ускорителями частиц. Ферми не был исключением. Постепенно, по мере того как увеличивались возможности экспериментов с квантовым миром, рос и список частиц.
ВЗГЛЯД В КОСМОС
Изучая космическую радиацию, Ферми был обязан опять обратить свой взгляд на небо. Космос хотел быть прочитанным. Эксперименты Пауэлла, Латтеса и Оккиалини вдохновили ученых на то, чтобы создавать в ускорителях положительные, отрицательные и нейтральные пионы и исследовать их взаимодействие с материей. Какие из этих взаимодействий были сильными, а какие — слабыми? Какие частицы были элементарными, то есть основой, из которой можно получить все остальные? Началась гонка за открытием целой вселенной новых частиц. В 1948 году Ферми встретился в Калифорнийском университете с Юкавой, Виком и Сегре и обсудил с ними свое видение мезонов. Сам Ферми говорил так:
«Когда была выдвинута теория Юкавы (согласно которой сильное ядерное взаимодействие соответствует обмену я-мезонами между нуклонами), было вполне оправданно предположить, что задействованные частицы — протоны, нейтроны (нуклоны) и я-мезоны — могут считаться элементарными. Эта уверенность постепенно таяла, так как очень быстро исследователи стали открывать новые частицы».
Ученые исследовали поток частиц, происходящих от космической радиации и способных при взаимодействии с магнитным полем Земли порождать такие удивительные явления, как полярное сияние. Они поднимались в горы и даже совершали полеты на воздушных шарах с детекторами и фотопленкой в надежде поймать новые кванты из космоса. В 1947 году были открыты новые космические частицы, вначале К-мезон (или каон), затем — гипероны (Δ, Ξ,Σ, Ω). Долгое время о свойствах гиперонов ничего не было известно, их начали изучать годы спустя.
Таким образом, например, распад каона К+ на два пиона
К+ → π+ + π+ + π-
был первым примером нового типа слабого взаимодействия, при котором не испускались электроны и в котором также наблюдалось сильное взаимодействие. Впоследствии были открыты другие типы распада каона. Ферми всегда смотрел в корень проблемы. Столкнувшись с каскадом новых частиц, обнаруженных в космических лучах, он сформулировал простой вопрос: откуда берутся эти космические лучи? Ученый вновь продемонстрировал свои выдающиеся навыки обобщения в статье On the Origin of Cosmic Radiation («О происхождении космического излучения»), опубликованной в 1949 году. В ней он выдвинул теорию о том, что космические лучи — это продукт ядерных реакций на звездах: они ускоряются в космосе под воздействием сильных электромагнитных полей звезд и галактик, которые должны быть похожи, на те, что ученые воссоздают в циклотронах, но имеют при этом гораздо большую интенсивность. В теории Ферми были и темные пятна, поскольку она не объясняла до конца поведение тяжелых ядер, обнаруженных в космических лучах.
Летом 1949 года, через 11 лет после отъезда, Ферми вернулся в Италию, чтобы представить свою работу о происхождении космической радиации на международной конференции по космическим лучам, организованной в Комо. На родине его ждал теплый прием. Ученый был взволнован и растроган, встречая старых друзей. Он прочитал несколько лекций, воодушевив новое поколение итальянских физиков, для которых он был настоящей легендой.
Вернувшись в Италию, Ферми вместе со своим новым учеником Чжэньнином Янгом опубликовал революционную статью Are Mesons Elementary Particles? («Являются ли мезоны элементарными частицами?»), в которой соавторы утверждали, что π-мезоны могут быть результатом объединения нуклона и антинуклона. Янг и Ферми хорошо описали свою модель, объяснив сильное взаимодействие между л-мезонами. Их теорию в 1956 году дополнил Сёити Саката. Янг и Ферми приблизились к современной модели, в которой мезоны считаются результатом объединения кварка и антикварка. Интуиция подсказала Ферми, что строение мезонов заслуживает более глубокого изучения и что они состоят из частицы и античастицы. Но поскольку о существовании кварков еще не было известно, это важное открытие вплоть до 1960-х годов считалось второстепенным.