KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5b. Электричество и магнетизм

Ричард Фейнман - 5b. Электричество и магнетизм

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "5b. Электричество и магнетизм" бесплатно, без регистрации.
Перейти на страницу:

Это векторное уравнение, конечно, распадается на три урав­нения

и каждое из этих уравнений математически идентично уравнению

(14.17)

Все, что мы узнали о нахождении потенциала для извест­ного r, можно использовать для нахождения каждой компо­ненты А, когда известно j!

В гл. 4 мы видели, что общее решение уравнения элект­ростатики (14.17) имеет вид

Тогда мы немедленно получаем общее решение для Аx:

(14.18)

и аналогично для Ауи Az. (Фиг. 14.2 напоминает вам о при­нятых нами обозначениях для r12 и dV2.) Мы можем объ­единить все три решения в векторной форме:

(14.19)

(Вы можете при желании проверить прямым дифференцирова­нием компонент, что этот интеграл удовлетворяет С·А=0, поскольку С·j=0, а последнее, как мы видели, должно вы­полняться для постоянных токов.)

Мы имеем, таким образом, общий метод вычисления маг­нитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал j, который был бы создан плотностью зарядов р, равной jx/c2, и ана­логично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компо­нента А не связана таким же образом с «радиальной» компонен­той j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую ком­поненту А, решая три воображаемые электростатические зада­чи для распределений заряда r1=jx/с2, r2=jу/с2 и r3=jz/с2. Затем мы находим В, вычислив разные производные от А, входящие в ухА. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.

§ 3. Прямой провод

В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, поль­зуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоян­ный ток I. В отличие от заряда в проводнике в случае электро­статики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту. По величине она равна

(14.20)

внутри провода и нулю вне его.

Поскольку jхи jy оба равны нулю, то сразу же получим

Ах = 0, Ау = 0.

Чтобы получить Аг, мож­но использовать наше ре­шение для электростати­ческого потенциала j от провода с однородной плотностью заряда r=/г/с2.

Фиг. 14.3. Длинный цилинд­рический провод с однородной плотностью тока j, направлен­ный вдоль оси z.

Для точек вне бесконечного заряженного цилиндра электростатический потенциал равен

где r'=Ц(x2+y2), a l, — заряд на единицу длины pа2r. Следо­вательно, Агдолжно быть равно

для точек вне длинного провода с равномерно распределен­ным током. Поскольку pа2jz=I то можно также написать

(14.21)

Теперь можно найти В, пользуясь (14.4). Из шести про­изводных от нуля отличны только две. Получаем

(14.22)

,(14.23)

Мы получаем тот же результат, что и раньше: В обходит про­вод по окружности и по величине равен

(14.24).

§ 4. Длинный соленоид

Еще пример. Рассмотрим опять бесконечно длинный соле­ноид с током по окружности, равным пI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу дли­ны, несущих каждый ток I, и пренебрегаем небольшими зазо­рами между витками.)

Точно так же, как мы выводили «поверхностную плотность заряда» а, определим здесь «поверхностную плотность тока» J, равную току на единице длины по поверхности соленоида (что, конечно, есть просто среднее j, умноженное на толщину тонкой намотки). Величина J здесь равна nI. Этот поверхностный ток (фиг. 14.4) имеет компоненты

Мы должны теперь найти А для такого распределения токов. Прежде всего найдем Ах в точках вне соленоида. Резуль­тат такой же, как электростатический потенциал вне цилиндра с поверхностным зарядом:

Фиг. 14.4. Длинный соленоид с поверхностной плотностью тока J.

где s0=-,//c2. Мы не решали случай такого распределения заряда, но делали нечто по­хожее. Это распределение заряда эквивалентно двум жестким цилиндрам, состоя­щим из зарядов, один из положительных, другой из отрицательных, с малым относи­тельным смещением их осей в направлении у. Потенциал такой пары цилиндров пропорционален производной по у от потен­циала одного однородно заряженного цилиндра. Мы, конечно, можем вычислить константу пропорциональности, но пока не будем возиться с этим.

Потенциал заряженного цилиндра пропорционален lnr'; потенциал пары тогда равен

Итак, мы знаем, что

(14.25)

где К — некоторая константа. Рассуждая точно так же, найдем

(14.26)

Хотя мы раньше говорили, что вне соленоида магнитного поля нет, теперь мы находим, что поле А существует и цир­кулирует вокруг оси z (см. фиг. 14.4). Возникает вопрос: равен ли нулю его ротор?

Очевидно, Вхи Вyравны нулю, а

Итак, магнитное поле вне очень длинного соленоида действи­тельно равно нулю, хотя векторный потенциал нулю не равен.

Мы можем проверить наш результат, прибегнув к другим соображениям. Циркуляция векторного потенциала вокруг соленоида должна равняться потоку В внутри катушки [урав­нение (14.11)]. Циркуляция равна А·2pr' или, поскольку А=К1r', она равна 2pК. Заметьте, что циркуляция не зави­сит от r'. Так и должно быть, если В вне соленоида отсутствует, потому что поток есть просто величина В внутри соленоида, умноженная на pа2. Он один и тот же для всех окружностей с радиусом r'>а. Раньше мы нашли, что поле внутри равно n//e0c2, поэтому мы можем определить константу К:

или

Итак, векторный потенциал снаружи имеет величину

(14.27)

и всегда перпендикулярен вектору r'.

Мы говорили о соленоидальной катушке из проволоки, но такое же поле мы могли бы создать, вращая длинный ци­линдр с электростатическим зарядом на поверхности. Если у нас есть тонкий цилиндрический слой радиуса а с поверхност­ным зарядом s, то вращение цилиндра образует поверхностный ток J=sv, где v=sw — скорость поверхностного заряда. Внут­ри цилиндра тогда будет магнитное поле B=saw/e0с2.

Теперь можно поставить интересный вопрос. Предположим, что перпендикулярно к оси цилиндра мы поместили короткий отрезок проволоки W от оси до поверхности и прикрепили ее к цилиндру так, что проволока вращается вместе с ним (фиг. 14.5). Эта проволока движется в магнитном поле, так что сила vXB приведет к тому, что концы проволоки зарядятся (они будут заряжаться до тех пор, пока поле Е зарядов не урав­новесит силы vXB). Если цилиндр заряжен положительно, то конец проволоки вблизи оси будет иметь отрицательный заряд. Измеряя заряд на конце проволоки, мы могли бы опре­делить скорость вращения системы. Мы получили бы «угловой скоростемер» (или «угловой ситометр»)!

Но вы, наверно, засомневаетесь: «А что, если я сам перей­ду,— скажете вы,— в систему координат вращающегося ци­линдра? Там заряженный цилиндр покоится, а я знаю из электростатических уравнений, что внутри цилиндра никакого поля не будет, не будет и силы, толкающей заряды к центру. Поэтому здесь что-то не так?» Нет. Все правильно.

Фиг. 14.5.Вращающийся за­ряженный цилиндр создает внутри себя магнитное поле.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*