KnigaRead.com/

Фридэн Королькевич - Этюды о свете

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Фридэн Королькевич, "Этюды о свете" бесплатно, без регистрации.
Перейти на страницу:

Уроки Коперника призывают исследователей учитывать вывод Луи де Бройля: «История наук показывает, что прогресс науки постоянно тормозился тираническим влиянием определенных концепций, которые стали в конце концов рассматриваться как догмы. По этой причине необходимо периодически подвергать весьма глубокому исследованию принципы, которые в конечном счете стали применяться без обсуждения».

Сегодня такими принципами, привычными и необсуждаемыми, стали основные положения электромагнитной теории света, которой исполнилось 135 лет.

ВМЕСТО ТАЙНЫ — ЗАГАДКА

Планк был сторонником электромагнитной теории света и во избежание потрясения ее основ предлагал даже исключить из теории гипотезу световых квантов. Он глубоко понимал и признавал, что открытая им константа — квант действия — совершенно чужда уравнениям Максвелла. Парадоксально, но факт: оберегая электродинамику Максвелла, пытаясь сохранить ее в строю действующих теорий, Планк показал несостоятельность всех электродинамических теорий излучения, их полную несовместимость с квантовыми представлениями, а также с опытом.

Профессор Нью-Йоркского университета Морис Клайн с изрядной долей сарказма указывает на то, что, как и гравитация, электромагнитные волны обладают одной замечательной особенностью: мы не имеем ни малейшего понятия о том, какова их физическая природа. Сведение света к частному случаю электромагнитных колебаний не решает вопрос о его сущности, это всего лишь замена одной проблемы другой — так считают известные физики Майкельсон, Шустер, Вавилов и Борн.

Вместо раскрытия тайны света — загадка электромагнетизма.

Профессор Клайн подчеркивает также, что электромагнитная теория света создана на основе математических рассуждений. То есть на примере теории Максвелла мы сталкиваемся с поразительным фактом: одно из величайших достижений физики оказывается почти целиком математическим рассуждением. При этом электрические и магнитные поля — не более чем названия переменных в формулах, где электрический заряд всего лишь носитель символа.

Это обстоятельство позволяет записывать уравнения Максвелла в интегральной форме таким образом, что содержащийся в них коэффициент, называемый электрической постоянной, физического смысла не имеет. А уравнения в симметричном виде Хевисайда — Герца можно свести к двум компактным с комплексным вектором, где нет ничего электромагнитного.

Всего лишь к одному уравнению в алгебраической записи сводятся все уравнения Максвелла в векторных обозначениях. В 1838 году, задолго до Максвелла, аналогичные уравнения создал английский физик Мак-Куллах. Дело, однако, значительно серьезнее вопроса установления первенства. Великие уравнения Максвелла являют собой красоту и мощь математического описания света. Но они далеки от квантовых представлений, достоверность которых подтверждена опытом. Следовательно, принципы электромагнитной теории излучений не соответствуют реальности. Они держатся лишь на привычной вере в их обоснованность, восходящей к открытым Фарадеем взаимодействиям электрических и магнитных полей.

Главные выводы Максвелла таковы: переменное магнитное поле создает электрическое поле, которое в свою очередь возбуждает магнитное поле, и т. д. Электрические и магнитные поля, взаимно порождая друг друга, образуют единое переменное электромагнитное поле — электромагнитную волну, которая сама себя распространяет в пространстве со скоростью света. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода с переменным электрическим током.

Известно, однако, что взаимная индукция, то есть взаимопорождение электрических и магнитных полей, довольно быстро иссякает без подпитки даже в лабораторных условиях. А свет галактики GRB 971214, например, идет к нам 12 миллиардов лет. Какая уж тут индукция? Или она — самое долгоживущее явление из всех известных, включая стабильные протоны?

Утверждается также, что свет — это синусоидальные волны. Однако в 1976 году Чэпмен показал, что генераторы испускают в основном вовсе не синусоидальные волны. Установка Генриха Герца, которая якобы экспериментально доказала тождество света и электромагнитных волн, на самом деле производила и производит то, что теперь называют «окрашенным шумом».

Электромагнитная теория света порождает вопрос за вопросом. Почему она чужда постоянной Планка? Почему уравнения Максвелла, вопреки опыту, сводят магнетизм к электричеству? Почему даже мощные магнитные поля порядка 200 кЭ не влияют на скорость света? Почему уравнения Максвелла вполне применимы в далеких от электромагнетизма областях — в теории теплопроводности и термодинамике? И почему описание одного явления — света — поделено между двумя разнородными теориями — квантовой и волновой, ни одна из которых, по Планку, не может одержать окончательную победу?

Появление этих вопросов следствие неполноты знания, и ответы на них — дело времени, либо же они вызваны недостаточной обоснованностью теории, и ответы на них едва ли могут быть бесспорными.

Свет не имеет ни заряда, ни магнитности. Но он имеет энергию. Это открывает возможность более глубокого и близкого к реальности его изучения.

САМАЯ МАЛЕНЬКАЯ «МАТРЕШКА» ФИЗИКИ

Недавно в программе подготовки Америки к новому тысячелетию в Белом доме выступил профессор ньютоновской кафедры Кембриджского университета Стивен Хокинг. Он сказал, что, как и у русских матрешек, в физике существует предел открытия все меньших и меньших структур. В конце концов выявляется самая маленькая из них, разобрать которую уже нельзя. Такой самой маленькой «матрешкой» в физике является сегодня постоянная Планка.

Впервые о возможности существования такой «матрешки» Макс Планк доложил Берлинскому физическому обществу 18 мая 1899 года. За два года до этого, как бы в предчувствии ее реальности, он писал, что энергия материальной системы всегда может быть разложена на элементы. Это согласовывалось с картиной атомистического устройства мира. Но исходной посылкой гипотезы Планка послужила атомистическая по сути молекулярно-кинетическая теория и статистика Больцмана. Последний убедил Планка в том, что верная теория излучения никогда не может быть построена без введения в нее элемента дискретности.

Классическая теория излучения считала его непрерывным. Однако опыты не отвечали этому представлению, а формулы приводили к бесконечно большой энергии света высокой частоты, что было абсурдно.

Теоретическая мысль зашла в тупик. Выход из него открыл Планк, включив в теорию излучения элементы дискретности.

19 октября 1900 года Планк представил немецкому физическому обществу принципиально новую формулу излучения, которая отвечала опыту. Еще через два месяца, 14 декабря, он доложил обществу о введении в физику понятия кванта энергии и новой фундаментальной константы, впоследствии названной его именем — кванта действия.

Началась эра квантовой теории.

Главная идея Планка сводилась к тому, что излучение дискретно, оно испускается отдельными порциями — квантами, энергия которых кратна величине новой константы.

При вручении Планку Нобелевской премии член Шведской Королевской академии наук Экстранд заявил, что пройдет еще немало времени, прежде чем иссякнут сокровища, добытые его гением. Но уже в 1911 году на I Сольвеевском конгрессе Планк сказал, что поиск законов излучения нельзя признать полностью удовлетворительным и что решение проблемы возможно лишь путем введения новой гипотезы, которая прямо противоречит основным представлениям. В нобелевской речи он заявил, что введение кванта действия еще не создает истинной теории квантов. А в 1943 году писал: возникла важнейшая проблема — «этой странной константе придать физический смысл».

Казалось бы, этот смысл уже найден. В учебной и научной литературе постоянная Планка характеризуется как квант действия, фундаментальная физическая константа, определяющая широкий круг явлений, для которых существенна дискретность величин с размерностью действия. Называют ее и масштабом делимости энергии кванта, коэффициентом пропорциональности. Наиболее точное значение величины константы получил нобелевский лауреат английский физик Брайан Джозефсон на основе эффекта протекания сверхпроводящего тока через тонкий слой изоляторов — эффекта, названного впоследствии его именем. Эта величина — 6,626176(36)·10−27 эрг·с.

Однако этого было явно недостаточно, чтобы ответить хотя бы на простые вопросы Ореста Хвольсона, автора всемирно известного курса физики: почему константа Планка так важна? Почему она вторгается, чтобы не сказать — суется, во все возможные физические явления? Что такое постоянная Планка?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*